( 您好!臺灣時間:2021/05/18 00:11
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Jing-Yu Lin
論文名稱(外文):Apply the Estimation of Latent Heat Flux by Using Eddy Covariance Measurement to Improve the Determination of Bowen Ratio in AERMOD
外文關鍵詞:AERMODBowen ratioEddy CovaranceLatent Heat Flux
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣目前使用的空氣品質模式AERMOD (AMS/EPA Regulatory Model)源於美國,模式當中包溫比是以地表條件及季節決定的,然而包溫比是會隨著氣象條件及地表條件等因素而改變,故以定值決定包溫比並不適當。包溫比是可感熱通量與潛熱通量的比值,其中潛熱通量是地表蒸發及植被蒸散的總和,但因涉及太多層面,故無法準確的模擬,因此便發展出許多估算式。
Penman-Monteith(PM)及Priestley and Taylor(PT)是目前最普遍被使用的估算式,但這兩個估算式並未經實測值驗證過,故無法確認其在臺灣的適用性。本研究以關渡地區為例以渦度相關法(Eddy Covariance)驗證Penman-Monteith及Priestley and Taylor估算式,使其估算結果能符合臺灣關渡地區現況。再利用估算式所求出的潛熱通量,進而求得逐時包溫比,取代模式中以定值決定包溫比的方式。
由研究結果顯示,Penman-Monteith及Priestley and Taylor均適用於關渡地區,其中Penman-Monteith式中的冠層阻力在關渡地區約為100(sm-1)。利用Penman-Monteith式所求得的包溫比,與實際包溫比的相關度較高;而Priestley and Taylor式所求的的包溫比,因其公式本身僅與溫度相關,故其包溫比僅與溫度的變化有關。將上述兩方法所求得的包溫比代入AERMOD中,並將渦度相關法所求得的視為實際值,經比較之後,發現預設值包溫比代入所求得的污染物濃度與實際的污染物濃度相關度較低,且在冬天污染物低估的情形較嚴重。本研究所求出的逐月包溫比與模式預設值差異極大,因預設值無法反映出地表狀況及氣象,因此在使用AERMOD時建議輸入逐月包溫比,可使模擬出的值更接近實際情形。

Many air quality models developed from the USA have been widely utilized in Taiwan. However, in these modeling systems, many of default surface parameters are set for the topographic and climatic conditions in the USA, which are quite different from those in Taiwan. In addition, the simulation of diffusion patterns of air pollutant is directly affected by the estimation of the atmospheric stability, which can be quantified from the sensible heat flux. In many studies, the utilization of Bowen ratio by using different approaches are commonly used to calculate sensible heat fluxes and further determine the atmospheric stability used in air quality models . However, very few studies discuss the comparison among these approaches by using local measurement. Therefore, the objective of this research is to determine the localized surface parameters suitable in AERMOD for the conditions in Taiwan, to improve the determination of atmospheric stability and the performance of air quality models.
To achieve the abovementioned objective, in these researches, the widely used Penman-Monteith (PM) and Priestley –Taylor (EPA) formulas are being conducted to provide the quantitative basis for atmospheric stability. To verify the performance of these approaches, the measurement data collected by using eddy-covariance technique at Guandu grassland is applied in this study.
In this study, Penman-Monteith and Priestley –Taylor formulas are applied to the study area, Guandu. The canopy resistance of Penman-Monteith formular is about 100 (sm-1). The Bowen ratio calculated by Penman-Monteith formula has a higher correlation with the Bowen ratio calculated by eddy covariance. The Bowen ratio calculated by Priestley –Taylor formula is only affected by temperature. Then, input two of the Bowen ratios above to the AERMOD and then take the number calculated by eddy covariance as the real value. We found out that the correlation with pollutant concentration using default Bowen Ratio and real pollutant concentration is irrelevant. Furthermore, the pollutant concentration calculated by default Bowen Ration underestimated much more seriously.

誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1研究緣起 1
1.2研究目的 3
第二章 文獻回顧 4
2.1空氣品質模式 4
2.1.1 AERMOD 4
2.1.2 AERMET 7
2.2能量收支平衡方程式 10
2.2.1淨輻射通量 10
2.2.2地表熱通量 11
2.2.3潛熱通量 12
2.2.4可感熱通量 12
2.2.5能量閉合度 13
2.3包溫比 16
2.4潛熱通量計算 18
2.4.1 Penman-Monteith 公式 18
2.4.2 Priestley-Taylor 公式 19
2.5渦度相關法 22
2.5.1相關理論及假設 22
2.5.2可感熱通量量測 24
2.5.3潛熱通量量測 25
第三章 研究方法 26
3.1研究流程 26
3.2資料來源 28
3.2.1關渡通量站 28
3.2.2資料處理 30
3.3潛熱通量計算 33
3.3.1 Penman-Monteith 公式 33
3.3.2 Priestley-Taylor 公式 35
3.4包溫比計算 37
3.5空氣品質模式 39
3.5.1 氣象前處理─AERMET 40
3.5.2 主程式─AERMOD 41
第四章 結果與討論 43
4.1 淨可用通量 43
4.2作物冠層阻力 45
4.2.1冠層阻力敏感度分析 45
4.2.2關渡地區作物冠層阻力 53
4.3潛熱通量及可感熱通量分析 54
4.3.1 Penman-Monteith 54
4.3.2 Priestley-Taylor 61
4.4 包溫比分析 66
4.4.1 Penman-Monteith 66
4.4.2 Priestley-Taylor 68
4.4.3平均包溫比 72
4.5 以不同包溫比代入AERMOD中模擬污染物濃度 74
4.5.1 以逐月包溫比代入AERMOD中模擬出的污染物濃度 74
4.5.2 以逐時包溫比代入案例日所模擬出的污染物濃度 81
第五章 結論與建議 84
5.1結論 84
5.2建議 86
參考文獻 87
附錄A. Matlab Code 92
附錄B. AERMOD Code 122

Abtew, W, & Obeysekera, Jayantha. (1995). Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods. Transactions of the ASAE, 38(1), 121-129.
Allen, Richard G, Jensen, Marvin E, Wright, James L, & Burman, Richard D. (1989). Operational estimates of reference evapotranspiration. Agronomy Journal, 81(4), 650-662.
Allen, Richard G, Pereira, Luis S, Raes, Dirk, & Smith, Martin. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300, 6541.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, U, Moncrieff, J., Foken, T., . . . Vesala, T. (1999). Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. In A. H. Fitter & D. G. Raffaelli (Eds.), Advances in Ecological Research (Vol. Volume 30, pp. 113-175): Academic Press.
Baldocchi, Dennis D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479-492.
Bowen, I. S. (1926). The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. Physical Review, 27(6), 779-787.
Chiou, Yi-Lin. (2005). 地表過程蒸發散之觀測與分析.
Cimorelli, AJ, Perry, SG, Venkatram, A, Weil, JC, Paine, RJ, Wilson, RB, . . . Paumier, JO. (2004). AERMOD: DESCRIPTION OF MODEL FORMULATION. US ENVIRONMENTAL PROTECTION AGENCY OoAQPaS, Emissions, Monitoring, and Analysis Division. North Carolina: US ENVIRONMENTAL PROTECTION AGENCY, Office of Air Quality Planning and Standards, Emissions, Monitoring, and Analysis Division, 91.
Cimorelli, Alan J, Perry, Steven G, Venkatram, Akula, Weil, Jeffrey C, Paine, Robert J, Wilson, Robert B, . . . Brode, Roger W. (2005). AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. Journal of Applied Meteorology, 44(5), 682-693.
Clothier, BE, Clawson, KL, Pinter Jr, PJ, Moran, MS, Reginato, R Jackson, & Jackson, RD. (1986). Estimation of soil heat flux from net radiation during the growth of alfalfa. Agricultural and forest meteorology, 37(4), 319-329.
Crago, Richard D, & Brutsaert, Wilfried. (1992). A comparison of several evaporation equations. Water Resources Research, 28(3), 951-954.
Den Hartog, G, Neumann, HH, King, KM, & Chipanshi, AC. (1994). Energy budget measurements using eddy correlation and Bowen ratio techniques at the Kinosheo Lake tower site during the Northern Wetlands Study. Journal of Geophysical Research: Atmospheres (1984–2012), 99(D1), 1539-1549.
Drexler, Judy Z, Snyder, Richard L, Spano, Donatella, Paw, U, & Tha, Kyaw. (2004). A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrological Processes, 18(11), 2071-2101.
EPA, Sept. (2004). User’s Guide for the AMS/EPA Regulatory Model-AERMOD: EPA-454/B-03-001. US Environmental Protection Agency, Research Triangle Park, NC.
FAO.). Retrieved 2013/05/20, from http://www.fao.org/documents/en/docrep.jsp;jsessionid=4C86DB6EA20923FACCE5DF10D61043F1
Faulkner, William B, Shaw, Bryan W, & Grosch, Tom. (2008). Sensitivity of two dispersion models (AERMOD and ISCST3) to input parameters for a rural ground-level area source. Journal of the Air & Waste Management Association, 58(10), 1288-1296.
Finnigan, JJ, Clement, R, Malhi, Y, Leuning, R, & Cleugh, HA. (2003). A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation. Boundary-Layer Meteorology, 107(1), 1-48.
Foken, Thomas. (2008). Experimental Methods for Estimating the Fluxes of Energy and Matter Micrometeorology (pp. 105-151): Springer.
Gavin, H., & Agnew, C. A. (2004). Modelling actual, reference and equilibrium evaporation from a temperate wet grassland. Hydrological Processes, 18(2), 229-246.
Herbst, Mathias, & Kappen, Ludger. (1999). The ratio of transpiration versus evaporation in a reed belt as influenced by weather conditions. Aquatic botany, 63(2), 113-125.
Heusinkveld, BG, Jacobs, AFG, Holtslag, AAM, & Berkowicz, SM. (2004). Surface energy balance closure in an arid region: role of soil heat flux. Agricultural and Forest Meteorology, 122(1), 21-37.
Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric Environment, 40(30), 5902-5928.
Holtslag, AAM, & Van Ulden, AP. (1983). A simple scheme for daytime estimates of the surface fluxes from routine weather data. Journal of Climate and Applied Meteorology, 22(4), 517-529.
Ibanez, M, Perez, PJ, Rosell, JI, & Castellvi, F. (1999). Estimation of the latent heat flux over full canopy covers from the radiative temperature. Journal of Applied Meteorology, 38(4), 423-431.
Jia, Zhenzhen, Liu, Shaomin, Xu, Ziwei, Chen, Yujie, & Zhu, Mingjia. (2012). Validation of remotely sensed evapotranspiration over the Hai River Basin, China. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D13).
Johnson, Michael J, & Survey, Geological. (1995). Summer Evapotranspiration Rates, by Bowen-ratio and Eddy-correlation Methods, in Boulder Flat and in Maggie Creek Area, Eureka County, Nevada, 1991--91: US Geological Survey.
Moges, SA, Katambara, Z, & Bashar, K. (2003). Decision support system for estimation of potential evapo-transpiration in Pangani Basin. Physics and Chemistry of the Earth, Parts A/B/C, 28(20), 927-934.
Monteith, JL. (1965). Evaporation and environment. Paper presented at the Symp. Soc. Exp. Biol.
Monteith, JL. (1981). Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107(451), 1-27.
Perez, PJ, Castellvi, F, Ibanez, M, & Rosell, JI. (1999). Assessment of reliability of Bowen ratio method for partitioning fluxes. Agricultural and Forest Meteorology, 97(3), 141-150.
Peters, W.D., Agency, United States. Environmental Protection, Planning, United States. Environmental Protection Agency. Office of Air Quality, Standards, Planning, United States. Environmental Protection Agency. Office of Air Quality, Standards. Emissions, Monitoring, & Division, Analysis. (2004). User''s Guide for the AERMOD Meteorological Preprocessor (AERMET): U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions, Monitoring, and Analysis Division.
Price, Jonathan S. (1991). Evaporation from a blanket bog in a foggy coastal environment. Boundary-Layer Meteorology, 57(4), 391-406.
Priestley, CHB, & Taylor, RJ. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.
Scire, Joseph S, Strimaitis, David G, & Yamartino, Robert J. (2000). A user’s guide for the CALPUFF dispersion model. Earth Tech, Inc, 521.
Silverman, Keith C, Tell, Joan G, Sargent, Edward V, & Qiu, Zeyuan. (2007). Comparison of the industrial source complex and AERMOD dispersion models: case study for human health risk assessment. Journal of the Air & Waste Management Association, 57(12), 1439-1446.
Slatyer, Ralph Owen, & MGILROY, IC. (1961). Practical microclimatology, with special reference to the water factor in soil-plant-atmosphere relationships. Practical microclimatology, with special reference to the water factor in soil-plant-atmosphere relationships.
Soucha, Catherine, Wolfe, Charlotte P, & Grimmtind, C Susan B. (1996). Wetland evaporation and energy partitioning: Indiana dunes national lakeshore. Journal of Hydrology, 184(3), 189-208.
Sun, Li, & Song, Changchun. (2008). Evapotranspiration from a freshwater marsh in the Sanjiang Plain, Northeast China. Journal of Hydrology, 352(1–2), 202-210.
Tanner, Bertrand D. (1988). Use requirements for Bowen ratio and eddy correlation determination of evapotranspiration.
Tillman, JE. (1972). The Indirect Determination of Stability, Heat and Momentum Fluxes in the Atmospheric Boundary Layer from Simple Scalar Variables During Dry Unstable Conditions. Journal of Applied Meteorology, 11, 783-792.
Venkatram, A. (1980). Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations. Boundary-Layer Meteorology, 19(4), 481-485.
Verma, Shashi B, Rosenberg, Norman J, & Blad, Blaine L. (1978). Turbulent exchange coefficients for sensible heat and water vapor under advective conditions. Journal of Applied Meteorology, 17(3), 330-338.
Weil, JC, Corio, LA, & Brower, RP. (1997). A PDF dispersion model for buoyant plumes in the convective boundary layer. Journal of Applied Meteorology, 36(8), 982-1003.
Yang, Duo-Xing, Yang, Mu-Shui, Zhao, Xiao-Hong, Liu, Min, Xing, Ke-Jia, & Qiu, Lei. (2005). AERMOD 模式系統理論. 化學工業與工程, 22(2), 130-135.
Zhou, Li, & Zhou, Guangsheng. (2009). Measurement and modelling of evapotranspiration over a reed (< i> Phragmites australis) marsh in Northeast China. Journal of Hydrology, 372(1), 41-47.
Zoras, S., Triantafyllou, A. G., & Deligiorgi, D. (2006). Atmospheric stability and PM10 concentrations at far distance from elevated point sources in complex terrain: Worst-case episode study. Journal of Environmental Management, 80(4), 295-302.
杜佳穎. (1999). 氣溫模式之發展與驗證.
杜榮鴻. (2005). 應用 MODIS 影像估算潛勢蒸發散量之研究.
邱文雅. (1999). 關渡濕地水土特性分析與生態風險之評估, 國立台灣大學農業工程學研究所碩士論文.
姚銘輝, 陳守泓, & 蔡致榮. (2009). (技術服務 77: 30-33) 通量塔-氣象監測之新發展趨勢.
徐詠瑋. (2011). 包溫比預測方程式之研究. 臺灣大學環境工程學研究所學位論文(2011 年), 1-124.
陳奕穎. (2012). 應用渦流相關法探討地表水氣通量與熱通量之特徵: 以亞熱帶季節性常綠闊葉林為例; Investigating the Seasonal Variability of Surface Heat and Water Vapor Fluxes with Eddy Covariance Techniques: A Subtropical Evergreen Forest as An Example.
陳述, 姚銘輝, & 陳守泓. (2008). 利用潛熱通量資料驗證水稻田蒸發散模式. 作物, 環境與生物資訊, 5(1), 29-39.
陳毓雯. (2009). 氣候因子影響水稻田灌溉需水量變化之研究.
葉信富, 陳進發, & 李振誥. (2005). 潛勢能蒸發散經驗公式之最佳化比較. 農業工程學報, 51(1), 27-37.
齊國祥. (2003). 利用衛星資料推估中國大陸與台灣地區地表反照率研究.

第一頁 上一頁 下一頁 最後一頁 top