( 您好!臺灣時間:2022/07/02 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Fu-Jing Yang
論文名稱(外文):Investigating Influences of Atmospheric Stability Derived from Sensible Heat Flux Measurement on Air Quality Model
外文關鍵詞:AERMODatmospheric stabilityMonin-Obukhov lengthsensible heat fluxsurface layer scintillomete
  • 被引用被引用:0
  • 點閱點閱:631
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大氣穩定度 (atmospheric stability)是決定空氣品質模式準確度的重要參數,而大氣穩定度是由可感熱通量( sensible heat flux)計算求得的。一般上,可感熱通量是由測站測得的,並且用以模擬特定區域的空氣品質,但由於測站為單點測量,用來模較大空間尺度的區域會產生差異,因此探討擴尺度可感熱通量是一項重要的議題。藉由不同尺度的測量方法測量可感熱通量,會因量測範圍和計算過程的不同而產生差異,本研究利用兩種不同尺度的方法測量可感熱通量:渦度相關法 (eddy-covariance, EC),及閃爍測量儀 (surface layer scintillometer, SLS)。本研究將SLS架設於關渡平原,是潮濕的草原地表,並於冬天測量3個月。研究發現SLS法低估可感熱通量及摩擦風速,可能是惰性紊流 (inactive turbulence)所造成的。藉由分析可感熱通量與環境因子之間的關係,如摩擦風速及包溫比,有助於了解不同尺度下的差異。在AERMET中,包溫比、地表反照率和粗糙長度,這些地表參數被用以計算求得可感熱通量,所以地表參數對模擬結果十分重要。在本研究中,EC法與SLS法量測的白天平均包溫比分別是0.55和0.42,與AERMET使用手冊的建議值不同。本研究發現:AERMET在計算可感熱通量時,並沒有考慮到能量閉合度,這會造成可感熱通量的高估,進而高估大氣混合的能 力,使模擬結果產生偏差。未來在使用AERMET時,建議修改摩擦風速的計算方式,而在計算可感熱通量時,必須考慮到地表能量平衡,以使模擬結果更為準確。

The determination of atmospheric stability in the air quality models is considered to be one of the key issues to ensure the model performance. Sensible heat flux is an important parameter to quantity the atmospheric stability, which is usually obtained by point-based measurements, and used to quantity the air quality in specific region. However, the gap in spatial scales between the conventional station-measured data and the area-averaged estimation in the larger region makes the upscaling process of the sensible heat flux to be crucial in model simulation. Sensible heat flux measurements by different scale approaches might be distinct because of footprint areas and calculation process. This study measures sensible heat flux by using two different scale approaches: point-based eddy-covariance (EC) method and path-averaged surface layer scintillometer (SLS). SLS was established in winter at Guandu plant, a grassland surface with high moist. The results suggest that the under-estimated sensible heat flux and friction velocity by SLS and might cause by inactive turbulence. By investigating the relationship between sensible heat flux and meteorology parameters such as friction velocity and Bowen ratio would offer a good way to understand the influence of different spatial scale. Surface characteristics parameters such as Bowen ratio, albedo, and roughness length are used to determine sensible heat flux in AERMET, thus, it is important to determine surface parameters for simulations. Averaged Bowen ratio in the daytime are 0.55 and 0.42 which are determined by EC-measurements and SLS-measurements respectively which are different to default suggested from AERMET user’s guide. This study suggests that AERMET does not consider energy balance closure, it results in over-estimating sensible heat flux and then over-estimating ability of convection. For the future works, the calculation process for friction velocity in AERMET should be corrected and energy balance closure should be considered.

Acknowledgement ii
Abstract in Chinese iii
Abstract iv
List of Figures and Tables vii
1. Introduction 9
1.1. Background and motivation 9
1.2. Objectives 11
2. Literature Review 13
2.1. AERMOD 13
2.2. Monin-Obukhov length 15
2.3. Surface energy budget 16
2.4. Eddy-covaria nce method 20
2.5. Surface layer scintillometer method 21
3. Methods 24
3.1. Site description 24
3.2. Theory and calculation process 25
3.3. Zero-plane displacement height 28
3.4. Instruments 29
3.5. Study design 30
4. Results and Discussion 32
4.1. Energy fluxes characteristics 32
4.2. Influence of environmental parameters 34
4.3. Energy balance closure and Bowen ratio 40
4.4. Applying measurements to AERMET 43
5. Conclusions and future works 48
Appendix 55

Allen, Richard G, Pereira, Luis S, Raes, Dirk, & Smith, Martin. (1998). Crop evapotranspiration-Guildelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Rome: FAO.
Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479-492.
Caputo, Marcelo, Gimenez, Marcelo, & Schlamp, Miguel. (2003). Intercomparison of atmospheric dispersion models. Atmospheric Environment, 37(18), 2435-2449.
Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., . . . Brode, R. W. (2005). AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. Journal of Applied Meteorology, 44(5), 682-693.
De Bruin, H. A. R., Meijninger, W. M. L., Smedman, Ann-Sofi, & Magnusson, Mikael. (2002). Displaced-Beam Small Aperture Scintillometer Test. Part I: The Wintex Data-Set. Boundary-Layer Meteorology, 105(1), 129-148.
EPA, U.S. (2004). User''s Guide for the AERMOD Meteorological Preprocessor (AERMET). (EPA-454/B-03-002).
Ezzahar, J., Chehbouni, A., Hoedjes, J., Ramier, D., Boulain, N., Boubkraoui, S., . . . Timouk, F. (2009). Combining scintillometer measurements and an aggregation scheme to estimate area-averaged latent heat flux during the AMMA experiment. Journal of Hydrology, 375(1-2), 217-226.
Fan, Chao-Jung. (2012). Upscaling Parameterization of Sensible Heat Flux under Different Atmospheric Stability Conditions across Various Land Surface Types. (Master thesis), National Taiwan University, College of Science.
Faulkner, William B., Shaw, Bryan W., & Grosch, Tom. (2008). Sensitivity of Two Dispersion Models (AERMOD and ISCST3) to Input Parameters for a Rural Ground-Level Area Source. Journal of the Air & Waste Management Association, 58(10), 1288-1296.
Foken, T. (2008). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351-1367.
Hoedjes, J. C. B., Chehbouni, A., Ezzahar, J., Escadafal, R., & De Bruin, H. A. R. (2007). Comparison of large aperture scintillometer and eddy covariance measurements: Can thermal infrared data be used to capture footprint-induced differences? Journal of Hydrometeorology, 8(2), 144-159.
Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric Environment, 40(30), 5902-5928.
Holtslag, A. A. M., & Vanulden, A. P. (1983). A SIMPLE SCHEME FOR DAYTIME ESTIMATES OF THE SURFACE FLUXES FROM ROUTINE WEATHER DATA. Journal of Climate and Applied Meteorology, 22(4), 517-529.
Howell, J. F., & Sun, J. (1999). Surface-Layer Fluxes in Stable Conditions. Boundary-Layer Meteorology, 90(3), 495-520.
Kesarkar, Amit P., Dalvi, Mohit, Kaginalkar, Akshara, & Ojha, Ajay. (2007). Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. Atmospheric Environment, 41(9), 1976-1988.
Lee, Hong-Yuan, & Shih, Shang-Shu. (2004). Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering, 23(2), 85-94.
Mahrt, L. (1998). Nocturnal Boundary-Layer Regimes. Boundary-Layer Meteorology, 88(2), 255-278.
Meijninger, W. M. L., & de Bruin, H. A. R. (2000). The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer. Journal of Hydrology, 229(1–2), 42-49.
Meijninger, W. M. L., Hartogensis, O. K., Kohsiek, W., Hoedjes, J. C. B., Zuurbier, R. M., & De Bruin, H. A. R. (2002). Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorology, 105(1), 37-62.
Moene, A. F., Beyrich, F., & Hartogensis, O. K. (2009). DEVELOPMENTS IN SCINTILLOMETRY. Bulletin of the American Meteorological Society, 90(5), 694-698.
Mohan, Manju, & Siddiqui, T. A. (1998). Analysis of various schemes for the estimation of atmospheric stability classification. Atmospheric Environment, 32(21), 3775-3781.
Odhiambo, G. O., & Savage, M. J. (2009a). Sensible Heat Flux by Surface Layer Scintillometry and Eddy Covariance over a Mixed Grassland Community as Affected by Bowen Ratio and MOST Formulations for Unstable Conditions. Journal of Hydrometeorology, 10(2), 479-492.
Odhiambo, G. O., & Savage, M. J. (2009b). Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance. South African Journal of Science, 105(5-6), 208-216.
Odhiambo, G. O., & Savage, M. J. (2011). Comparison of Sensible Heat Flux as Measured by Surface Layer Scintillometer and Eddy Covariance Methods Under Different Atmospheric Stability Conditions. In S. D. Attri, L. S. Rathore, M. V. K. Sivakumar & S. K. Dash (Eds.), Challenges and Opportunities in Agrometeorology (pp. 461-484): Springer Berlin Heidelberg.
Pahlow, Markus, Parlange, MarcB, & Porte-Agel, Fernando. (2001). On Monin–Obukhov Similarity In The Stable Atmospheric Boundary Layer. Boundary-Layer Meteorology, 99(2), 225-248.
Pitman, A. J. (1994). Assessing the Sensitivity of a Land-Surface Scheme to the Parameter Values Using a Single Column Model. Journal of Climate, 7(12), 1856-1869.
Rana, G., & Katerji, N. (2000). Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy, 13(2-3), 125-153.
Savage, M. J. (2009). Estimation of evaporation using a dual-beam surface layer scintillometer and component energy balance measurements. Agricultural and Forest Meteorology, 149(3-4), 501-517.
Scintec. (2006). Surface Layer Scintillometer SLS20/SLS40/SLS20-A/SLS40-A User Manual (including OEBMS1). Tubingen, Germany.
Stull, Roland B. (1988). An Introduction to Boundary Layer Meteorology. Boston: Kluwer Academic Publishers.
Thiermann, V., & Grassl, H. (1992). The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorology, 58(4), 367-389.
Thiermann, Volker, & Rummel, Andreas. (1998). Correction for transmitter vibrations in laser scintillation measurements. 13-22.
Townsend, A. A. (1961). Equilibrium layers and wall turbulence. Journal of Fluid Mechanics, 11(01), 97-120.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., . . . Wesely, M. L. (2000). Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103(3), 279-300.
Von Randow, Celso, Kruijt, Bart, Holtslag, Albert A. M., & de Oliveira, Maria Betania L. (2008). Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest. Agricultural and Forest Meteorology, 148(4), 680-690.
Wilson, Kell, Goldstein, Allen, Falge, Eva, Aubinet, Marc, Baldocchi, Dennis, Berbigier, Paul, . . . Verma, Shashi. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113(1–4), 223-243.
Zeweldi, Dawit A., Gebremichael, Mekonnen, Wang, Junming, Sammis, Theodore, Kleissl, Jan, & Miller, David. (2010). Intercomparison of Sensible Heat Flux from Large Aperture Scintillometer and Eddy Covariance Methods: Field Experiment over a Homogeneous Semi-arid Region. Boundary-Layer Meteorology, 135(1), 151-159.

第一頁 上一頁 下一頁 最後一頁 top