(3.235.191.87) 您好!臺灣時間:2021/05/13 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周書弘
研究生(外文):Shu-Hung Chou
論文名稱:臭氧對含氮藥物及個人保健用品之降解與含氮產物生成影響之研究
論文名稱(外文):Degradation of N-PPCPs and Formation of Nitrogen-containing Products in Aqueous Solution by Ozonation
指導教授:蔣本基蔣本基引用關係
指導教授(外文):Pen-Chi Chiang
口試委員:顧 洋曾迪華
口試委員(外文):Young KuDyi-Hwa Tseng
口試日期:2013-06-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:122
中文關鍵詞:臭氧氮平衡毒性中間產物
外文關鍵詞:Ozonenitrogentoxicityintermediates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來水污染在公共健康和環境上為大家所注重的議題。在本研究中,利用臭氧氧化去除地表水和飲用水中的含氮藥物及個人保健用品(N-PPCPs),臭氧氧化N-PPCPs的去除機制與動力學模式探討。臭氧氧化過程中轉移的各種含氮物種、中間產物以及N-PPCPs的降解後所產生的毒性亦在本研究中討論。研究結果發現臭氧氧化之快速反應大多發生在反應時間10分鐘內(第一區),而反應時間10分鐘後則呈現目標化合物進行緩慢的降解(第二區)。當SUVA值小於2 mg/L-m則樣品中含有相對少量的芳香族。N-PPCPs降解後,溶解有機氮(DON)的濃度隨著時間的推移逐漸降低,而經過反應時間30分鐘後則趨於穩定。溶解無機氮(DIN)物種(NO2-,NO3-,NH4+)濃度則隨時間的增加而上升最後趨於穩定。本研究中觀察到臭氧氧化目標化合物的去除效率順序為carbamazepine (CBZ)> diclofenac (DCF)> sulfamethoxazole (SMX)。目標化合物經過臭氧氧化後可能導致的毒性比目標化合物本身的毒性還要高。

Water pollution is one of the important public health and environmental issues. For this study, ozone has been used as an oxidant for removing N-PPCPs from surface and drinking waters. In this study, the mechanism and kinetic model in describing the removal of N-PPCPs was investigated. The shift of nitrogen species and their intermediate products by the ozonation process were also investigated. The degradation of the N-PPCPs toxicity was also investigated. The rapid reaction account for most degradation of target compounds occurring within the first ten min (Zone I), whereas insignificant degradation was observed during the slow reaction as the process passed after the 10 min (Zone II). The sample contains relatively small amount of aromatic moieties when the value of SUVA is smaller than 2 mg/L-m. In the degradation of N-PPCPs, the concentration of the dissolved organic nitrogen (DON) was gradually decreased with time into a stationary phase after 30 min reaction time, and the concentration of dissolved inorganic nitrogen DIN species (NO2-, NO3-, and NH4+) was increased with time into a stationary. From this study ,it was observed that the removal efficiency of target compounds by ozonation was in the following order : CBZ > DCF > SMX. The toxicity increase in ozonated samples due to the formation of treatment that can cause toxicity more than the parent compound has been ozonated at beginning.

誌謝 I
Abstract II
摘要 III
Contents IV
Figure Captions VI
List of Tables IX
Oral Defence Comments XI
Chapter 1 Introduction 1-1
1-1 Background 1-1
1-2 Objectives 1-3
Chapter 2 Literature Review 2-1
2-1 The characteristics of N-PPCPs 2-1
2-1-1 Sulfamethoxazole 2-1
2-1-2 Diclofenac 2-2
2-1-3 Carbamazepine 2-4
2-1-4 Degradation of total organic carbon (TOC) 2-6
2-2 Ozonation process 2-8
2-3 Toxicity 2-10
2-4 Nitrogen balance 2-14
2-5 Intermediates 2-16
2-5-1 Sulfamethoxazole 2-16
2-5-2 Diclofenac 2-20
2-5-3 Carbamazepine 2-35
2-6 Predictive model of N-PPCPs decay by ozone 2-40
Chapter 3 Materials and Methods 3-1
3-1 Target compounds 3-2
3-2 Ozonation process 3-4
3-3 Nitrogen analysis 3-5
3-4 Micotox process 3-6
3-5 Analytical methods for N-PPCPs 3-10
3-5-1 Residual ozone 3-10
3-5-2 TOC 3-12
3-5-3 HPLC 3-13
Chapter 4 Results and Discussions 4-1
4-1 The degradation of target compounds via ozonation 4-1
4-1-1 Simulative model for N-PPCPs degradation during ozonation 4-1
4-1-2 The degradation of N-PPCPs in terms of TOC and UV254 during ozonation 4-10
4-2 Variation of nitrogen species of target compounds during ozonation 4-15
4-3 The toxicity of PPCPs degradation 4-24
4-4 Experimental data Factor analysis 4-29
4-5 Degradation pathways 4-36
Chapter 5 Conclusions and Recommendations 5-1
5-1 Conclusions 5-1
5-2 Recommendations 5-2
Reference R-1
Appendix A-1


Bailey, P. S., 1978. Ozonation in Organic Chemistry; Academic Press: New York. 1.
Bartels and W. Von Tumpling, 2007. Solar radiation influence on the decomposition process of diclofenac in surface waters. Sci Total Environ. 374 , 143–155.
Beltra’n, F.J., 2004. Ozone Reaction Kinetics for Water and Wastewater Systems. CRC, Boca Raton, pp. 113–149.
Braeutigam, P., Franke, M., Schneider, R.J., Lehmann, A., Stolle, A., Ondruschka, B., 2012. Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic-Acoustic-Cavitation (HAC). Water Res. 46, 2469-2477.
Brain, R.A., Johnson, D.J., Richards, S.M., Sanderson, H., Sibley, P.K., and Solomon, K.R., 2004. Effects of 25 pharmaceutical compounds to Leman gibba using a seven-day static-renewal test, Environmental Toxicology and Chemistry, 23, 371-382.
Buser H-R, Poiger T., Muller M. D., 1998. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid phtodegradation in a lake. Environ Sci Technol. 32, 3449-3456.
Calza, V.A. Sacas, C. Medana, C. Baiocchi, A. Dimos and E. Pelizzetti et al., 2006. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B-Environ. 67, 197–205.
Carlsson, C., Johansson, A.-K., Alvan, G., Bergman, K., Kuhler, T., 2006. Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients, Science of the Total Environment. 364, 67-87.
Chang, E.E., Chiang, P.C., Li, I.S., 2007. Reduction of Low-MW Model Compounds by Ozonation and O[sub 3]/UV Processes. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 11, 20-27.
Chang, E.E., Liu, T.Y., Huang, C.P. , Liang, C.H., Chiang, P.C., 2013. Degradation of mefenamic acid from aqueous solutions by the ozonation and O3/UV processes. Separation and Purification Technol., 98, 123-129.
Chen and J.J. Pignatello, 1997. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ Sci Technol. 31, 2399–2406.
Coelho, A.D., Sans, C., Aguera, A., Jose Gomez, M., Esplugas S., Dezotti M., 2009. Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assesment. Sci Total Environ. 407, 3572-3578.
Dodd, M.C., Huang, C.H., 2004. Transformation of the Antibacterial Agent Sulfamethoxazole in Reactions with Chlorine: Kinetics, Mechanisms, and Pathways. Environ. Sci. Technol., 38, 5607-5615.
Dowideit, P., von Sonntag, C., 1998. Reaction of ozone with ethane and its methyl- and chlorine-substituted derivatives in aqueous solution. Environ. Sci. Technol. 32, 1112-1119.
Edzwald, J.K. and Tobiason, J.E., 1999. Enhanced coagulation: US requirements and a broader view. Water Sci Technol. 40, 55-62.
Esplugas, S., Bila, D.M., Krause, L.G.T., Dezotti, M., 2007. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 149, 631–642.
F. Javier, B., Juan, L.A., Francisco, J.R., Gloria, R., 2009. Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices. Chemosphere 77, 53-59.
Facile, N., Barbeau, B., Prevost, M., Koudjonou, B., 2000. Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone. Water Res. 34, 3238–3246.
Ferrari, B., Mons, R., Vollat, B., Fraysse, B., Paxeus, N., Lo Giudice, R., Pollio, A., Garric, J., 2004. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environment Toxicology and Chemistry, 23, 1344-1354.
Ferrari, B., Paxeus, N., Lo Giudice, R., Pollio, A., and Garric, J., 2003. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicology and Environmental Safety, 55, 359-370.
Fuhrman, J., 1990. Dissolved free amino acid cycling in an estuarine out flow plume. Mar Ecol. Prog Ser. 66, 197–203.
Gagnon, C., Lajeunesse, A., Cejka, P., Gagne, F., Hausler, R., 2008. Degradation of selected acidic and neutral pharmaceutical products in a primary-treated wastewater by disinfection processes. Ozone: Sci. Eng. 30, 387–392.
Garcia-Ac, A., Broseus, R., Vincent, S., Barbeau, B., Prevost, M., Sauve, S., 2010. Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water. Chemosphere 79, 1056-1063.
Gomez-Ramos, M.d.M., Mezcua, M., Aguera, A., Fernandez-Alba, A.R., Gonzalo, S., Rodriguez, A., Rosal, R., 2011. Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution. J. Hazard. Mater. 192, 18–25.
Goncalves, A.G., Orfao, J.J.M., Pereira, M.F.R., 2012. Catalytic ozonation of sulphamethoxazole in the presence of carbon materials:Catalytic performance and reaction pathways. J. Hazard. Mater. 239-240, 167-174.
Harada, A., Komori, K., Nakada, N., Kitamura, K., Suzuki Y., 2008. Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Sci. Technol., 58, 1541-1546.
Heberer, 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett. 131, 5–17.
Heberer, 2002. Tracking persistent pharmaceutical residues from municipal sewage to drinking water, J. Hydrol. 266, 175–189.
Henry, F.K., 1974. An index of factorial simplicity. Psychometrika, 39, 31-36.
Hohmann, U. Freier, M. Wecks and S. Hohmann, 2007. Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2. Appl Catal B-Environ. 70, 447–451.
Hoigne, J., 1998. Chemistry of aqueous ozone, and transformation of pollutants by ozonation and advanced oxidation processes. In: J. Hubrec, editor. The handbook of environmental chemistry quality and treatment of drinking water. Berlin: Springer.
Huber, M.M., Canonica, S., Park, G.Y., Gunten, U.V., 2003. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 37, 1016–1024.
Huber, M.M., Gobel, A., Joss, A., Hermann, N., Loffler, D., McArdell, C.S., Ried, A., Siegrist, H., Ternes, T.A., von Gunten, U., 2005. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ. Sci. Technol. 39, 4290–4299.
Ikehata, K., Nagashkar, N.J., Gamal El-Din, M., 2006. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 28, 353–414.
Jin, F.; Leitich, J.; von Sonntag, C., 1993. The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron transfer. J. Chem. Soc., Perkin Trans. 2, 1583–1588.
Johnson, A.C., Jurgens, M.D., Williams, R.J., Kummerer, K., Kortenkamp, A., Sumpter, J.P., 2008. Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. J. Hydrol. 348, 167–175.
Karanfil, T. Schlautman, MA, Erdogan, I., 2002. Survey of DOC and UV measurement particles with implications for SUVA determination. AWWA, Dec., 68-80.
Keen, O.S., Baik, S., Linden, K.G., Aga, D.S., Love, N.G., 2012. Enhanced Biodegradation of Carbamazepine after UV/H2O2 Advanced Oxidation. Environ. Sci. Technol. 46, 6222-6227.
Keil, R.G., Kirchman, D.L., 1991. Dissolved combined amino-acids in marine waters as determined by a vapor-phase hydrolysis method. Mar. Chem. 33, 243–259.
Kitis, M., 2001. The Reactivity of Natural Organic Matter to Disinfection By-products Formation and its Relation to Specific Ultraviolet Absorbance. Water Sci Technol. 43, 2-9.
Langlais, B., Reckhow, D.A., Brink, D.R., 1991. Ozone in water treatment, Application and engineering. Chelsea: Lewis.
Laurentiis, E.D., Chiron, S., Kouras-Hadef, S., Richard, C., Minella, M., Maurino, V., Minero, C., Vione, D.,2012. Photochemical Fate of Carbamazepine in Surface Freshwaters: Laboratory Measures and Modeling. Environ. Sci. Technol. 46, 8164-8173.
Lee, W., Westerhoff, P., 2005. Dissolved organic nitrogen measurement using dialysis pretreatment. Environ Sci. Technol. 39, 879–884.
Lee, W., Westerhoff, P., 2005. Dissolved Organic Nitrogen Measurement Using Dialysis Pretreatment. Environ. Sci. Technol. 39, 879-884.
Leenheer, J.A., 2004. Comprehensive assessment of precursors, diagenesis, and reactivity to water treatment of dissolved and colloidal organic matter. Water Sci. Technol, Water Supply. 4, 1–9.
Lin Angela Y-C, Tsai, Y-T., 2009. Occurrence of pharmaceuticals in Taiwan''s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407, 3793-3802.
McCarthy, M., Pratum, T., Hedges, J., Benner, R., 1997. Chemical composition of dissolved organic nitrogen in the ocean. Nature. 390, 150–4.
Mcdowell, D.C., Huber, M.M., Wagner, M., Guten, U.V., Ternes, A.T., 2005. Ozonation of Carbamazepine in drinking Water: Identification and kinetic study of major oxidation products. Environ. Sci. Technol. 39, 8014-8022.
Neng, C.S., Yue, H.Y., Hwong W. M., Cheng H.C., Ming L.L., 2006. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols. J Environ. Manage. 78, 216-222.
Perez-Estrada, L.A., Malato, S., Gernjak, W., Aguera, A., Thurman, E.M., Ferrer, I., and Fernandez-Alba, A.R., 2005. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol. 39, 8300-8306.
Raknes, K.L., 2005. Ozone in Drinking Water Treatment: Process Design, Operation, and Optimization. American Water Works Association, Denver.
Reckhow, D.A., Singer, P. C., and Malcolm, R. L., 1990. Chlorination of humic materials: byproduct formation and chemical interpretation. Environ. Sci. Technol. 24, 1665.
Rizzo, L., 2011. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res. 45, 4311–4340.
Rosal, R., Rodrı’guez, A., Perdigo’ n-Melo’ n, J.A., Mezcua, M., Hernando, M.D., Leto’ n, P., Garcı’a-Calvo, E., Agu‥ era, A., Ferna’ ndez-Alba, A.R., 2008a. Removal of pharmaceuticals and kinetics of mineralization by O3 /H2O2 in a biotreated municipal wastewater. Water Res. 42, 3719–3728.
Rosal, R., Rodrĺguez, A., Perdigόn-Melόn, J.A., Petre, A., Garcĭa-Calvo, E., Gόmez, M.J., Aguera, A., Fernandez-Alba, A.R., 2010. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 44, 577–588.
Schramm, C., Gans, O., Uhl, M., Grath, J., Scharf, S., Zieritz, I., Kralik, M., Scheidleder, A., Humer, F., 2006. Carbamazepine and Caffeine - Potential Screening Parameters for Groundwater Pollution by Municipal Wastewater. ([Carbamazepin and Coffein - Potentielle Screeningparameter fur Verunreinigungen des Grundwassers durch kommunales Abwasser]). Report Umweltbundesamt, REP-0061.
Schwaiger, J., Mallow, U., Ferling, H., 2004. Ecotoxicological Impact of Pharmaceuticals Long-term Effect on Fish. ([O kotoxikologische Auswirkungen von Arzneimitteln Langzeitwirkungen bei Fischen]). Bavarian State Office of Water Management (Bayerisches Landdesamt fur Wasserwirtschaft). Final Research Report 73- 040100 54/733.
Sein, M.M., Zedda, M., Turek, J., Schmidt T.C., Golloch, A., and Sonntag, C., 2008. Oxidation of diclofenac with ozone in aqueous solution. Environ Sci Technol. 42, 6656-6662.
Snyder, S.A., Wert, E.C., Rexing, D.J., Zegers, R.E., Drury, D.D., 2006. Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone: Sci. Eng. 28, 445–460.
Spiteller, M., Lamshoft. M., Zuhlke, S., Stulten, D., 2008. Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ. 405, 310-316.
Staehelin, J., Hoigne, J., 1985. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol. 19, 1206–1213.
Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.J., Gulde, B.H., Preuss, G., Wilme, U., Seibert, N.Z., 2002. Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol. 36, 3855–3863.
Ternes, T.A., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., Teiser, B., 2003. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 37, 1976–1982.
Tothill, I.E., Turner, A.P.F., 1996. Developments in bioassay methods for toxicity testing in water treatment. Trends in analytical Chemistry 75, 178-188.
Trovό, A.G., Nogueira, R.F.P., Aguera, A., Fernandez-Alba, A.R, Sirtori, C., Malato, S., 2009. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res. 43, 3922–3931.
Vandenbruwane, J., Neve, S.D., Qualls, R.G., Salomez, J., Hofman, G., 2007. Optimization of dissolved organic nitrogen (DON) measurements in aqueous samples with high inorganic nitrogen concentrations. Sci. Total Environ. 386, 103–113.
Vernouillet, G., Eullaffroy, P., Lajeunesse, A., Blaise, C., Gagne, F., Juneau, P., 2010. Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere 80 (9), 1062-1068.
Verstraete, W., Forrez, I., Carballa, M., Verbeken, K., Vanhaecke, L., Schlusener, M., 2010. Diclofenac oxidation by biogenic manganese oxides. Environ Sci Technol. 44, 3449-3454.
Vieno, N.M., Harkki, H., Tuhkanen, T., Kronberg, L., 2007. Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 41, 5077–5084.
Vogna, D., Marotta, R., Andreozzi, R., Napolitano, A., d’Ischia, M., 2004. Kinetic and chemical assessment of the UV/H2O¬2 treatment of antiepileptic drug carbamazepine. Chemosphere, 54, 497–505.
Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R., d''Ischia, M., 2004. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Research. 38, 414-422.
Voldhardt, K. P. C., 1987. Schore, N. E. Organic Chemistry, 2nd ed. W. H. Freeman & Co.: New York.
Von Gunten, U., 2003. Ozonation of drinking water. Part I. Oxidation kinetics and product formation. Water Res. 37, 1443–1467.
Weigel, R. Kallenborn and H. Huhnerfuss, 2004. Simultaneous solid-phase extraction of acidic, neutral and basic pharmaceuticals from aqueous samples at ambient (neutral) pH and their determination by gas chromatography–mass spectrometry, J. Chromatogr. A 1023: 183–195.
Westerhoff, P., Mash, H., 2002. Dissolved organic nitrogen in drinking water supplies: a review. J. Water Supply: Res. Technol. 51 ,415–448.
Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 39, 6649–6663.
Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J., 2006. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleric Acid Res. 34, D668-D672.
Xu, B., Tao, Y., Li, D.P., Hu, C.Y., Lin, Y.L., Xia, S.J., Tian, F.X., Gao, N.Y., 2011. Measurement of dissolved organic nitrogen in a drinking water treatment plant: Size fraction, fate, and relation to water quality parameters. Sci. Total Environ. 409, 1116-1122.
Zhang, Y.-J., Geisen, S.-U., and Gal, C., 2008. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73, 1151-1161.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔