跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/15 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳秉璋
研究生(外文):Bing-Chang Wu
論文名稱:高功能中風老年人行走跨越障礙物之多目標最佳控制策略
論文名稱(外文):Multi-Objective Optimal Control Strategies of the Locomotor System During Obstacle-Crossing in Highly Functioning Older Patients Post-Stroke
指導教授:呂東武呂東武引用關係
指導教授(外文):Tung-Wu Lu
口試委員:徐瑋勵林光華
口試委員(外文):Wei-Li HsuKuang-Hua Lin
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:中風跨越障礙物運動控制策略多目標最佳化方法動作分析
外文關鍵詞:Strokeobstacle crossingmotor control strategymulti-objective optimal controlmotion analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於醫療的進步,減少了中風病患的死亡率以及症狀,但相對的輕微症狀的中風病患卻增加了。目前用於評估中風病患的工具,主要都集中在中度以及嚴重的病患,輕微中風症狀由於天花板效應,在臨床上可能被忽略或是難以評估,而被判定為正常。過去的研究指出輕微中風症狀仍然會對病患的生活品質以及運動功能造成限制。
過去的研究顯示中風會增加病患跌倒的風險,73%的中風病患會在離開醫院六個月內跌倒至少一次,其中有10%是因為跨越障礙物,跨越障礙物是日常生活中不可避免的動作,需要精確的身體控制以及協調性以保持身體平衡來確保能成功跨越障礙物,跨越障礙物也是在復健治療上用以訓練神經受損病患動作之一。過去中風患者跨越障礙物的動作分析研究,著重於其運動參數,如關節角度、關節力矩、身體質量中心與壓力中心傾斜角的差異性,隨著障礙物高度以及受試者改變,有些參數改變,有些參數不變,運動參數確實可以討論關節表現,但無法討論整體動作控制策略, Lu (2012) 提出的多目標最佳控制方法,定義跨越障礙物之目標函數可由最小能量消耗與最大足部間隙妥協組合而成,並可描述跨越障礙物之控制策略。
本研究目的為使用多目標最佳控制方法,比較健康老年人與高功能中風病患跨越障礙物控制策略的差異,以了解高功能中風對病患動作控制的影響。本實驗受試者分為,20名老年高功能中風病患 (Stroke)以及15名健康老年人 (Elderly),分別跨越腳長之 10%,20%以及30%高度的障礙物。結果顯示,跨越障礙物之控制策略並無高度間差異,但有明顯的組間差異;前後腳跨越控制策略只有Elderly有顯著差異;Elderly後腳跨越的控制策略趨於保守,Stroke 前後腳控制策略並無顯著差異,表示視覺回饋在高功能中風病患的控制策略並無影響;Stroke 健側患側控制策略無顯著差異。由結果推論,高功能中風病患已有了新的且具有對稱性的控制策略,跨越障礙物時傾向於增加足部間隙,以較保守的策略跨越障礙物,以確保能成功跨越障礙物。相對於傳統大量運動學參數資訊,本研究能提供一個更簡易且明確的工具,用來描述高功能中風病患跨越障礙物時的控制策略,可以藉此評估以及預防病患跌倒的風險。


With the advance in clinical diagnosis and management, the severity of the consequences of a stroke has decreased, whereas the number of strokes resulting in minimal to moderate deficits has increased. However, available motor assessment tools are applicable mainly for moderately to severely affected patients. For highly functioning adults post-stroke, the deficits that do not become apparent from locomotor behavior may be overlooked or difficult to discover owing to ceiling effects of the functional assessment tools. Patients who have suffered a mild stroke are reported to have diminished quality of life and limitations in higher levels of motor function.
From the results of previous literatures, long-term stroke survivors may also have an increased falling risk owning to residual physical disability. 73% patients with stroke fell at least once in the six months after hospital discharged and of these, 10% of these fall were obstacle related. Obstacle crossing, requiring precise control of the swing limb while maintaining body balance through stability of the contralateral stance limb, is one of many complex tasks associated with ambulation in the daily environment and is also one kind of rehabilitation training program for neurological patients. Kinematic and kinetic data, such as joint angle, joint moment, inter-joint coordination and COM-COP inclination angle, is used in motion analysis of patients with stroke during obstacle crossing. Although these data are useful for evaluating the functional performance of patients with stroke, there still exist difficulties in the synthesis of the information to uncover the overall control strategies. Lu (2012) suggested that obstacle-crossing was formulated as an optimal control problem with two conflicting objectives: minimization of mechanical energy expenditure and maximization of foot-obstacle clearance.
The purposes of the present study were to compare the control strategy during obstacle-crossing between highly functioning older post-stroke and healthy elderly with a multi-objective optimal control (MOOC) technique. In the present study, 20 high-functioning older patients post-stroke (Stroke) and 15 health elderly subjects (Elderly) were requires to step over obstacles with heights of 10%﹐20% and 30% leg length.
Differences of control strategies of obstacle crossing were not found in height effects, but found in group effects. Differences of control strategies in leading and trailing limbs were only found in Elderly group, control strategies of Elderly trailing limb is more conservative, this mean the visual feedback is not effect in patients with Stroke. There were no significant differences of control strategies between contralateral and ipsilateral during obstacle crossing.
Therefore, it may be inferred that high-functioning older patients post-stroke appeared to have acquired a specific symmetric kinematic strategy. Stroke patient individuals increase their toe and heel clearance when crossing obstacles, in order to employ a more conservative strategy for successful obstacle crossing. The results of this study can provide a simpler and clearer tool to describe the control strategies during obstacle-crossing in highly functioning older patients post-stroke. It can be used to assess and prevent the risk of a fall.


目錄
誌謝 I
摘要 II
ABSTRACT IV
第 1 章 緒論 1
1.1 研究背景 1
1.1.1 中風病患的評估工具 1
1.1.2 跨越障礙物 5
1.1.3 跨越障礙物之運動系統控制策略 8
1.1.4 運動系統之連桿模型 9
1.2 研究目的 11
第 2 章 材料與方法 13
2.1 受試者 13
2.2 實驗器材與流程 16
2.2.1 實驗器材 16
2.2.2 實驗流程 17
2.3 實驗資料處理 19
2.3.1 下肢局部座標系統定義 19
2.3.2 廣義/局部座標系統轉換 25
2.3.3 力板資訊 26
2.4 二維人體模型建立 27
2.4.1 七連桿運動學 28
2.4.2 七連桿模型動力學 30
2.5 跨越障礙物之最佳化控制 38
2.5.1 最佳化控制方法 38
2.5.2 單目標最佳化控制數學模型 40
2.5.3 多目標最佳化控制模式數學模型 43
2.5.4 單目標與多目標最佳化收斂軌跡示範圖 44
2.6 統計分析 48
第 3 章 結果 49
3.1 前腳跨越 50
3.1.1 組間差異 51
3.1.2 高度間差異 52
3.2 後腳跨越 53
3.2.1 組間差異 54
3.2.2 高度間差異 55
3.3 高功能中風患者健側與患側跨越障礙物控制策略比較 56
3.4 前後腳跨越障礙物控制策略比較 57
第 4 章 討論 58
4.1 正常受試者權重值分佈 58
4.2 高度間差異 58
4.3 前腳與後腳跨越障礙物之控制策略比較 59
4.4 高功能中風病患健側與患側跨越障礙物控制策略比較 59
4.5 組間差異 60
4.6 腳趾間隙與腳趾間隙比例 61
4.7 研究限制與未來展望 61
第 5 章 結論 62
參考文獻 64




[1]Snell RS. (2011). Clinical neuroanatomy for medical students. Philadephia: Lippincott Williams & Wilkins.
[2]Haines DE. (1997). Fundamental neuroscience, New York: Churchill Livingstone.
[3]Cprpenter MB. (1976). Human neuroanatomy : (formerly Strong and Elwyn''s human neuroanatomy), Baltimore: Williams & Wilkins Co.
[4]Yamamoto L, Magalong E. (2003). Outcome measures in stroke. Critical Care Nursing Quarterly. 26: 283-293.
[5]WHO. http://www.who.int/en/, World Health Organization.
[6]Chang KC, Tseng MC. (2003). Costs of acute care of first-ever ischemic stroke in Taiwan. Stroke. 34:219-221.
[7]Hu HH, Chu FL, Chiang BN, et al., (1989). Prevalence of stroke in Taiwan. Stroke. 20:858-863.
[8]Hu HH, Sheng WY, Chu FL, et al., (1992). Incidence of stroke in Taiwan. Stroke. 23:1237-1241.
[9]Corriveau H, Hebert R, Raiche M, Prince F. (2004). Evaluation of postural stability in the elderly with storke. Archives of Physical Medicine & Rehabilitation. 85: 1095-1101.
[10]Weimar C, Kurth T, Kraywinkle K, Wagner M, Busse O, Haberl RL, Diener H-C, German Stroke data Bank C. (2003). Assessment of funtioning and disability after ischemic stroke. Stroke. 33: 2053-2059.
[11]Wolf PA, D''Agostion RB, O''Neal MA, sytkowski P, Kase CS, Belanger AJ, Kannel WB. (2003). Secular trends in storke incidence and mortality. The Framingham Study. Stroke. 23: 1551-1555.
[12]Micheal KM, Allen JK, Macko RF. (2005). Reduced ambulatory activity after storke: the role of balance, gait, and cardiovascular fitness. Archives of Physical Medicine & Rehabilitation. 86: 1552-1556.
[13]Pyoria O, Era P, Talvitie U. (2004). Relationships between standing balance and symmetry measurements in patients following recent strokes (3 Weeks or less) or older strokes (6 months or more). Physical Therapy. 84: 128-136.
[14]Platz T, Prass K, Denzler P, Bock S, Mauritz KH. (1999). Testing a motor performance series and a kinematic motion analysis as measures of performance in highfunctioning stroke patients: reliability, validity, and responsiveness to
therapeutic intervention. Arch Phys Med Rehabil. 80:270–277.
[15]Duncan PW, Samsa GP,Weinberger M, Goldstein LB, Bonito A, Witter DM, et
al., (1997). Health status of individuals with mild stroke. Stroke. 28:740–745.
[16]Carlsson GE, Moller A, Blomstrand C. (2003). Consequences of mild stroke in persons <75 years-a 1-year follow-up. Cerebrovasc Dis. 16:383–388.
[17]Vlahov D, Myers AH, A-Ibrahim MS. (1990). Epidemiology of Falls Among patients in a rehabilitation hospital. Archives of Physical Medicine & Rehabilitation. 71: 8-12.
[18]Forster A, Young J. (1995). Incidence and consequences of falls due to stroke: a
systematic injury. BMJ. 311:83-6.
[19]Hankey CJ, Warlow CP. (1999). Treatment and secondary prevention of stroke: evidence, costs, and effects on individuals and populations. Lancet. 354: 1457-1463.
[20]Jorgensen L, Engstad T, Jacobsen BK. (2002). Higher incidence of falls in long-term stroke survivors than in population controls: depressive symptoms predict falls after stroke. Strok. 33: 542-547.
[21]Langhorne P, Stott DJ, Robertson L, MacDonald J, Jones L, McAlpine C. (2000). Medical complications after stroke. Stroke. 31: 1223-1229.
[22]Stolze H, Klebe S, Zechlin C, Baecker C, Friege L, Deuschl G. (2004). Falls in frequent neurological diseases--prevalence, risk factors and artiology. Journal of Neurology. 251: 79-84.
[23]Lamb SE, Ferrucci L, Volapto S, Fried LP, Guralnik JM (2003). Women''s Health and Aging S. Risk factors for falling in home-dwelling older women with stroke: the Women''s Health and Aging Study. Stroke. 34: 494-501.
[24]Bassile CC, Dean C, Boden-Albala B, Sacco R. (2003). Obstacle Training programme for individuals post strole: feasicility study. Clinical Rehabilitation. 17: 130-136.
[25]Chen HL, Lu TW. (2006). Comparisons of the joint moments between leading and
trailing limb in young adults when stepping over obstacles. Gait Posture. 23:69–77.
[26]Chen HL, Lu TW, Lin HC. (2004). Three Dimensional kinematic an lysis of stepping over obstacles in young subjects. Biomedical Engineerin-Applications, Basis & Communications. 16: 157-163.
[27]Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB. (1991). Stepping over obstacles: gait patterns of healthy young and old adults. Journal of Gerontology. 46: 196-203.
[28]Austin, G.P., G.E. Garrett, and R.W. Bohannon (1999). Kinematic analysis of obstacle clearance during locomotion. Gait Posture. 10(2): 109-120.
[29]Sparrow, W.A., et al., (1996). Characteristics of gait in stepping over obstacles. Hum. mov. sci. 15(4): 605-622.
[30]Lu, T.W., H.L. Chen, and S.C. Chen (2006). Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait Posture. 23(4): 471-479.
[31]Lu, T.-W., H.-C. Yen, and H.-L. Chen (2007). Comparisons of the interjoint coordination between leading and trailing limbs when crossing obstacles of different heights. J Biomech. 40, Supplement 2(0): 163-165.
[32]Huang, S.-C., et al., (2008). Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing. Medical Engineering & Physics. 30(8): 968-975.
[33]Chou, L.S. and L.F. Draganich (1997). Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults. J Biomech. 30(4): 331-337.
[34]Chou, L.S. and L.F. Draganich (1998). Increasing obstacle height and decreasing toe-obstacle distance affect the joint moments of the stance limb differently when stepping over an obstacle. Gait Posture. 8(3): 186-204.
[35]Anderson, F.C. and M.G. Pandy (1999). A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. Comput Methods Biomech Biomed Engin. 2(3): 201-231.
[36]Pandy, M.G., B.A. Garner, and F.C. Anderson (1995). Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. J Biomech Eng. 117(1): 15-26.
[37]Chou, L.S., S.M. Song, L.F. Draganich (1995). Predicting the kinematics and kinetics of gait based on the optimum trajectory of the swing limb. J Biomech. 28(4): 377-385.
[38]Nubar, Y., R. Contini (1961). A minimal principle in biomechanics. Bull. Math.
Biophys. 23: 377-390.
[39]Zarrugh, M.Y. (1981). Power requirements and mechanical efficiency of treadmill walking. J Biomech. 14(3): 157-165.
[40]Armand, M., J.P. Huissoon, A.E. Patla (1998). Stepping over obstacles during locomotion: insights from multiobjective optimization on set of input parameters. IEEE Trans Rehabil Eng. 6(1): 43-52.
[41]Lu, T.-W., S.-C. Chen, H.-C. Chiu (2012). Best-compromise between mechanical energy expenditure and foot clearance predicts leading limb motion during obstacle-crossing. Gait & Posture. 36(3): 552-556.
[42]Pandy, M.G., F.C. Anderson, D.G. Hull (1992). A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J Biomech Eng. 114(4): 450-460.
[43]Chao, E.Y.-S., K. Rim (1973). Application of optimization principles in determining the applied moments in human leg joints during gait. J Biomech. 6(5): 497-510.
[44]Hurmuzlu, Y., C. Basdogan, J.J. Carollo (1994). Presenting joint kinematics of human locomotion using phase plane portraits and Poincare maps. J Biomech. 27(12): 1495-1499.
[45]Ju, M.S., J.M. Mansour (1980). Simulation of the double limb support phase of human gait. J Biomech Eng. 110(3): 223-229.
[46]Onyshko, S., D.A. Winter (1980). A mathematical model for the dynamics of human locomotion. J Biomech. 13(4): 361-368.
[47]Amirouche, F.M.L., S.K. Ider (1988). Simulation and analysis of a biodynamic human model subjected to low accelerations—A correlation study. Journal of Sound and Vibration. 123(2): 281-292.
[48]Hatze, H. (1997). A three-dimensional multivariate model of passive human joint torques and articular boundaries. Clinical Biomechanics. 12(2): 128-135.
[49]McFadyen, B.J., H. Carnahan (1994). The superimposed adjustments for obstacle clearance and level-to-stair transition during normal human gait. J Biomech 27(6): 809.
[50]Sattin, R.W. (1992). Falls among older persons: a public health perspective. Annu Rev Public Health. 13: 489-508.
[51]Tinetti, M.E., M. Speechley (1989). Prevention of falls among the elderly. N Engl J Med. 320(16): 1055-1059.
[52]Tinetti, M.E., M. Speechley, S.F. Ginter (1988). Risk factors for falls among elderly persons living in the community. N Engl J Med. 319(26): 1701-1707.
[53]Lu, T.-W. (1997). Geometric and mechanical modelling of the human locomotor system. Department of Engineering Science, University of Oxford, U.K. (D. Phil. Thesis).
[54]Dempster, W.T. (1955). Space requirement of the seated operator. Aerospace Medical Research Laboratories, Ohio.
[55]Lu, T.-W., et al., (2010). Symmetrical kinematic changes in highly functioning older patients post-stroke during obstacle-crossing. Gait & Posture. 31:511–516.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊