跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝欣容
研究生(外文):Hsin-Long Hsieh
論文名稱:正常人兩大腦半球間結構與功能關聯性之研究
論文名稱(外文):A study of interhemispheric structure-function relationships in healthy human brain using resting-state fMRI and diffusion spectrum imaging tractography
指導教授:趙福杉
指導教授(外文):Fu-Shan Jaw
口試委員:林發暄吳恩賜吳文超
口試委員(外文):Fa-Hsuan LinJoshua O. GohWen-Chau Wu
口試日期:2013-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:73
中文關鍵詞:胼胝體連結性擴散頻譜成像靜息態功能磁共振成像結構與功能之關聯性
外文關鍵詞:Corpus callosumconnectivitydiffusion spectrum imagingresting-state fMRIstructure-function relationships
相關次數:
  • 被引用被引用:1
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人腦是一個在結構與功能上整合的複雜系統,為了探究其結構連結與功能連結之間的關係,本研究以連結左右大腦半球的胼胝體為研究目標,採用嚴謹分析方法探討其結構連結與功能連結之間的關聯性,以及其關聯性在額葉、頂葉、枕葉和聶葉之特徵。本研究徵招二十位右撇子的正常人,於3T的核磁共振掃描系統中取得一組高解析度結構影像、一組功能性影像以及一組擴散性影像。任意兩點之結構連結性定義為連接該兩點之纖維束總數除以胼胝體總纖維束。任意兩點之功能連結性定義為該兩點之時間序列的偏相關系數。該結構連結與功能連結之間的關聯性定義為兩者之間的相關系數。
本研究顯示出在胼胝體其結構連結與功能連結之間的關聯性為輕度至中度。此外,該關聯性在同倫連結與異倫連結之間有顯著性的不同,此結果意謂胼胝體之結構幾何對於該關聯性有貢獻。輕度至中度的結構功能關聯性意謂著兩半腦間之功能連結的現象為大腦白質結構整合之結果,不僅只透過胼胝體,該結構功能關聯性比我們預期更為複雜。
本研究以嚴謹分析方法探究大腦最簡單的結構─胼胝體,我們的結果與過去各種分析方法及技術得到的結果一致,驗證大腦的結構連結與功能連結僅中度相關,而非高度相關。


The aim of this study is to well-knit approach to better understand the structure-function relationships in healthy human brains using the simplest system as a model to investigate the relationships between interhemispheric structural connectivity and functional connectivity and the characteristics among different lobes in the brain. To understand the structure-function relationships in human brain, this study focuses on the corpus callosum, the simplest system in human brain. We recruited 20 young healthy right-handed adults in this study. Scanning was performed on a 3T MRI system, consisting of structural, functional, and diffusion MRI. Structural connectivity was defined as the number of connected tracts terminating between two regions divided by the total number of corpus callosal tracts and functional connectivity was defined as the partial correlation coefficient of time courses between two distinct regions. Structure-function relationships were computed by correlating functional connectivity with structural connectivity.
We found weak to moderate structure-function correlations in the corpus callosum. In addition, homotopic and heterotopic connections showed distinct strengths of structure-function correlations. These results indicate the topology of the corpus callosum is associated with structure-function relationships. Moreover, functional connectivity can be explained by structural connectivity to some degree, such that interhemispheric functional connectivity may involve contributions from other physical connections in addition to the corpus callosum and hormone effect.
In this study, we use the simplest system corpus callosum to confirm that instead of strong degree of structure-function relationship, the structural connectivity is moderately correlated with the functional connectivity, which is the consistent result across a wide variety of methods.


口試委員會審定書…… i
誌謝…… ii
中文摘要…… iii
英文摘要…… iv
Chapter 1 Introduction …… 1
Chapter 2 Structural and Functional connectivity …… 4
2.1 Structural connectivity…… 4
2.1.1 Diffusion magnetic resonance imaging …… 4
2.1.2 Diffusion spectrum imaging …… 7
2.1.3 Tractography …… 9
2.1.4 Quantification of the structural connectivity …… 11
2.2 Resting-state functional connectivity …… 14
2.2.1 BOLD fMRI …… 14
2.2.2 Resting-state networks …… 15
2.3 Structure-function relationships …… 17
2.4 Challenges and limitations of current approaches …… 20
2.5 Purpose …… 22
Chapter 3 Methods …… 23
3.1 Materials and image acquisitions …… 24
3.2 Structural connectivity analysis …… 26
3.2.1 DSI reconstruction …… 26
3.2.2 Tractography …… 26
3.2.3 Structural connectivity matrix …… 27
3.3 Functional connectivity analysis …… 28
3.3.1 Image preprocessing …… 28
3.3.2 Group ICA analysis …… 29
3.3.3 Functional connectivity matrix …… 29
3.4 Structure-function relationship analysis …… 30
Chapter 4 Results …… 31
4.1 Group ICA activation maps …… 31
4.2 Structural connectivity ……… 31
4.3 Functional connectivity …… 32
4.4 Structure-function relationships …… 33
Chapter 5 Discussion …… 35
Chapter 6 Conclusion …… 41
References …… 42
Supplementary Materials …… 48


[1]K. J. Friston, "Functional and effective connectivity in neuroimaging," Hum Brain Mapp, vol. 2, pp. 56-78, 1994.
[2]K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak, "Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets," J Cereb Blood Flow Metab, vol. 13, pp. 5-14, 1993.
[3]K. J. Eriston, C. D. Frith, and R. S. J. Frackowiak, "Time-dependent changes in effective connectivity measured with PET.," Hum Brain Mapp vol. 1, pp. 69-79, 1993.
[4]M. van den Heuvel, R. Mandl, J. Luigjes, and H. Hulshoff Pol, "Microstructural organization of the cingulum tract and the level of default mode functional connectivity," J Neurosci, vol. 28, pp. 10844-51, Oct 22 2008.
[5]C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hagmann, "Predicting human resting-state functional connectivity from structural connectivity," Proc Natl Acad Sci U S A, vol. 106, pp. 2035-40, Feb 10 2009.
[6]J. S. Damoiseaux and M. D. Greicius, "Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity," Brain Struct Funct, vol. 213, pp. 525-33, Oct 2009.
[7]C. J. Honey, R. Kotter, M. Breakspear, and O. Sporns, "Network structure of cerebral cortex shapes functional connectivity on multiple time scales," Proc Natl Acad Sci U S A, vol. 104, pp. 10240-5, Jun 12 2007.
[8]R. B. Mars, S. Jbabdi, J. Sallet, J. X. O''Reilly, P. L. Croxson, E. Olivier, M. P. Noonan, C. Bergmann, A. S. Mitchell, M. G. Baxter, T. E. Behrens, H. Johansen-Berg, V. Tomassini, K. L. Miller, and M. F. Rushworth, "Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity," J Neurosci, vol. 31, pp. 4087-100, Mar 16 2011.
[9]D. C. Steffens, W. D. Taylor, K. L. Denny, S. R. Bergman, and L. Wang, "Structural integrity of the uncinate fasciculus and resting state functional connectivity of the ventral prefrontal cortex in late life depression," PLoS One, vol. 6, p. e22697, 2011.
[10]B. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zollei, J. R. Polimeni, B. Fischl, H. Liu, and R. L. Buckner, "The organization of the human cerebral cortex estimated by intrinsic functional connectivity," J Neurophysiol, vol. 106, pp. 1125-65, Sep 2011.
[11]J. M. Segall, E. A. Allen, R. E. Jung, E. B. Erhardt, S. K. Arja, K. Kiehl, and V. D. Calhoun, "Correspondence between structure and function in the human brain at rest," Front Neuroinform, vol. 6, p. 10, 2012.
[12]M. P. van den Heuvel, R. C. Mandl, R. S. Kahn, and H. E. Hulshoff Pol, "Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain," Hum Brain Mapp, vol. 30, pp. 3127-41, Oct 2009.
[13]O. Sporns, "The human connectome: a complex network," Ann N Y Acad Sci, vol. 1224, pp. 109-25, Apr 2011.
[14]C.-h. Park, S. Y. Kim, Y.-H. Kim, and K. Kim, "Comparison of the small-world topology between anatomical and functional connectivity in the human brain," Physica A: Statistical Mechanics and its Applications, vol. 387, pp. 5958-5962, 2008.
[15]K. Supekar, L. Q. Uddin, K. Prater, H. Amin, M. D. Greicius, and V. Menon, "Development of functional and structural connectivity within the default mode network in young children," Neuroimage, vol. 52, pp. 290-301, Aug 1 2010.
[16]E. L. Hahn, "Spin Echoes," Phys Rev, vol. 80, pp. 580-594, 1950.
[17]H. Y. Carr and E. M. Purcell, "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments," Physical Review, vol. 94, pp. 630-638, 1954.
[18]H. C. Torrey, "Bloch Equations with Diffusion Terms," Physical Review, vol. 104, pp. 563-565, 1956.
[19]E. O. Stejskal and J. E. Tanner, "Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient," J. Chem. Phys., vol. 42, pp. 288-292, 1965.
[20]V. J. Wedeen, P. Hagmann, W. Y. Tseng, T. G. Reese, and R. M. Weisskoff, "Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging," Magn Reson Med, vol. 54, pp. 1377-86, Dec 2005.
[21]S. Mori, B. J. Crain, V. P. Chacko, and P. C. M. van Zijl, "Three-Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging," Ann Neurol, vol. 45, pp. 265-269, 1999.
[22]C. Westin, S. Maier, H. Mamata, A. Nabavi, F. Jolesz, and R. Kikinis, "Processing and visualization for diffusion tensor MRI," Medical Image Analysis, vol. 6, pp. 93-108, 2002.
[23]M. Lazar, D. M. Weinstein, J. S. Tsuruda, K. M. Hasan, K. Arfanakis, M. E. Meyerand, B. Badie, H. A. Rowley, V. Haughton, A. Field, and A. L. Alexander, "White matter tractography using diffusion tensor deflection," Hum Brain Mapp, vol. 18, pp. 306-21, Apr 2003.
[24]V. J. Wedeen, R. P. Wang, J. D. Schmahmann, T. Benner, W. Y. Tseng, G. Dai, D. N. Pandya, P. Hagmann, H. D''Arceuil, and A. J. de Crespigny, "Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers," Neuroimage, vol. 41, pp. 1267-77, Jul 15 2008.
[25]D. M. Morris, K. V. Embleton, and G. J. Parker, "Probabilistic fibre tracking: differentiation of connections from chance events," Neuroimage, vol. 42, pp. 1329-39, Oct 1 2008.
[26]T. E. Behrens, M. W. Woolrich, M. Jenkinson, H. Johansen-Berg, R. G. Nunes, S. Clare, P. M. Matthews, J. M. Brady, and S. M. Smith, "Characterization and propagation of uncertainty in diffusion-weighted MR imaging," Magn Reson Med, vol. 50, pp. 1077-88, Nov 2003.
[27]P. J. Basser and C. Pierpaoli, "Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI," Journal of Magnetic Resonance, Series B, , . vol. 111, pp. 209-219, 1996.
[28]D. S. Tuch, "Q-ball imaging," Magn Reson Med, vol. 52, pp. 1358-72, Dec 2004.
[29]E. Bullmore and O. Sporns, "Complex brain networks: graph theoretical analysis of structural and functional systems," Nat Rev Neurosci, vol. 10, pp. 186-98, Mar 2009.
[30]M. Rubinov and O. Sporns, "Complex network measures of brain connectivity: uses and interpretations," Neuroimage, vol. 52, pp. 1059-69, Sep 2010.
[31]S. Ogawa, T. M. Lee, A. S. Nayak, and P. Glynn, "Oxygenation-Sensitive Contrast in Magnetic Resonance Image of Rodent Brain at High Magnetic Fields," Magn Reson Med, vol. 14, pp. 68-78, 1990.
[32]B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, "Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI," Magn Reson Med., vol. 34, pp. 537-541, 1995.
[33]C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith, "Investigations into resting-state connectivity using independent component analysis," Philos Trans R Soc Lond B Biol Sci, vol. 360, pp. 1001-13, May 29 2005.
[34]J. S. Damoiseaux, S. A. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, "Consistent resting-state networks across healthy subjects," Proc Natl Acad Sci U S A, vol. 103, pp. 13848-53, Sep 12 2006.
[35]F. De Martino, F. Gentile, F. Esposito, M. Balsi, F. Di Salle, R. Goebel, and E. Formisano, "Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers," Neuroimage, vol. 34, pp. 177-94, Jan 1 2007.
[36]M. van den Heuvel, R. Mandl, and H. Hulshoff Pol, "Normalized cut group clustering of resting-state fMRI data," PLoS One, vol. 3, p. e2001, 2008.
[37]E. A. Allen, E. B. Erhardt, E. Damaraju, W. Gruner, J. M. Segall, R. F. Silva, M. Havlicek, S. Rachakonda, J. Fries, R. Kalyanam, A. M. Michael, A. Caprihan, J. A. Turner, T. Eichele, S. Adelsheim, A. D. Bryan, J. Bustillo, V. P. Clark, S. W. Feldstein Ewing, F. Filbey, C. C. Ford, K. Hutchison, R. E. Jung, K. A. Kiehl, P. Kodituwakku, Y. M. Komesu, A. R. Mayer, G. D. Pearlson, J. P. Phillips, J. R. Sadek, M. Stevens, U. Teuscher, R. J. Thoma, and V. D. Calhoun, "A baseline for the multivariate comparison of resting-state networks," Front Syst Neurosci, vol. 5, p. 2, 2011.
[38]J. Wang, X. Zuo, and Y. He, "Graph-based network analysis of resting-state functional MRI," Front Syst Neurosci, vol. 4, p. 16, 2010.
[39]V. G. van de Ven, E. Formisano, D. Prvulovic, C. H. Roeder, and D. E. Linden, "Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest," Hum Brain Mapp, vol. 22, pp. 165-78, Jul 2004.
[40]V. van de Ven, C. Bledowski, D. Prvulovic, R. Goebel, E. Formisano, F. Di Salle, D. E. Linden, and F. Esposito, "Visual target modulation of functional connectivity networks revealed by self-organizing group ICA," Hum Brain Mapp, vol. 29, pp. 1450-61, Dec 2008.
[41]K. R. Van Dijk, T. Hedden, A. Venkataraman, K. C. Evans, S. W. Lazar, and R. L. Buckner, "Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization," J Neurophysiol, vol. 103, pp. 297-321, Jan 2010.
[42]Y. Liu, M. Liang, Y. Zhou, Y. He, Y. Hao, M. Song, C. Yu, H. Liu, Z. Liu, and T. Jiang, "Disrupted small-world networks in schizophrenia," Brain, vol. 131, pp. 945-61, Apr 2008.
[43]R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore, "Neurophysiological architecture of functional magnetic resonance images of human brain," Cereb Cortex, vol. 15, pp. 1332-42, Sep 2005.
[44]C. J. Stam, "Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?," Neuroscience Letters, vol. 355, pp. 25-28, 2004.
[45]M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, "Resting-state functional connectivity reflects structural connectivity in the default mode network," Cereb Cortex, vol. 19, pp. 72-8, Jan 2009.
[46]K. R. Van Dijk, M. R. Sabuncu, and R. L. Buckner, "The influence of head motion on intrinsic functional connectivity MRI," Neuroimage, vol. 59, pp. 431-8, Jan 2 2012.
[47]T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E. Nichols, "Non-white noise in fMRI: does modelling have an impact?," Neuroimage, vol. 29, pp. 54-66, Jan 1 2006.
[48]R. S. Desikan, F. Segonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, and R. J. Killiany, "An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest," Neuroimage, vol. 31, pp. 968-80, Jul 1 2006.
[49]K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, "Spatial Registration and Normalization of Images," Hum Brain Mapp, vol. 2, pp. 165-189, 1995.
[50]H. L. Hsieh, P. Y. Chen, F. S. Jaw, and W. Y. Tseng, "An objective and automatic denoising method applied to resting state functional magnetic resonance imaging data," Brain Connectivity, vol. 2, pp. A35-36, 2012.
[51]A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Computation, vol. 7, pp. 1129-1159, 1995.
[52]Y. O. Li, T. Adali, and V. D. Calhoun, "Estimating the number of independent components for functional magnetic resonance imaging data," Hum Brain Mapp, vol. 28, pp. 1251-66, Nov 2007.
[53]K. Jarbo, T. Verstynen, and W. Schneider, "In vivo quantification of global connectivity in the human corpus callosum," Neuroimage, vol. 59, pp. 1988-96, Feb 1 2012.
[54]D. E. Stark, D. S. Margulies, Z. E. Shehzad, P. Reiss, A. M. Kelly, L. Q. Uddin, D. G. Gee, A. K. Roy, M. T. Banich, F. X. Castellanos, and M. P. Milham, "Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations," J Neurosci, vol. 28, pp. 13754-64, Dec 17 2008.
[55]M. Hampson, B. S. Peterson, P. Skudlarski, J. C. Gatenby, and J. C. Gore, "Detection of functional connectivity using temporal correlations in MR images," Hum Brain Mapp, vol. 15, pp. 247-62, Apr 2002.
[56]D. Zhang, A. Z. Snyder, M. D. Fox, M. W. Sansbury, J. S. Shimony, and M. E. Raichle, "Intrinsic functional relations between human cerebral cortex and thalamus," J Neurophysiol, vol. 100, pp. 1740-8, Oct 2008.
[57]M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, "Role of the Corpus Callosum in Functional Connectivity," AJNR Am J Neuroradiol, vol. 24, pp. 208-212, 2003.
[58]L. Q. Uddin, E. Mooshagian, E. Zaidel, A. Scheres, D. S. Margulies, A. M. C. Kelly, Z. Shehzad, J. S. Adelstein, F. X. Castellanos, B. B. Biswal, and M. P. Milham, "Residual functional connectivity in the split-brain revealed with resting-state functional MRI," NeuroReport, vol. 19, pp. 703-709, 2008.
[59]J. M. Tyszka, D. P. Kennedy, R. Adolphs, and L. K. Paul, "Intact bilateral resting-state networks in the absence of the corpus callosum," J Neurosci, vol. 31, pp. 15154-62, Oct 19 2011.
[60]L. A. Kilpatrick, D. H. Zald, J. V. Pardo, and L. F. Cahill, "Sex-related differences in amygdala functional connectivity during resting conditions," Neuroimage, vol. 30, pp. 452-61, Apr 1 2006.
[61]C. C. Thompson and G. B. Potter, "Thyroid Hormone Action in Neural Development," Cereb Cortex, vol. 10, pp. 939-945, 2000.
[62]P. Skudlarski, K. Jagannathan, V. D. Calhoun, M. Hampson, B. A. Skudlarska, and G. Pearlson, "Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations," Neuroimage, vol. 43, pp. 554-61, Nov 15 2008.
[63]H. Huang, J. L. Prince, V. Mishra, A. Carass, B. Landman, D. C. Park, C. Tamminga, R. King, M. I. Miller, P. C. van Zijl, and S. Mori, "A framework on surface-based connectivity quantification for the human brain," J Neurosci Methods, vol. 197, pp. 324-32, Apr 30 2011.
[64]J. Liederman, "The Dynamics of Interhemispheric Collaboration and Hemispheric Control," Brain and Cognition, vol. 36, pp. 193-208, 1998.
[65]P. Y. Chen, S. C. Chien, H. L. Hsieh, J. D. Lee, and W. Y. Tseng, "Decomposition of Cortical-cortical Functional Connectivity Using a Functional Data Analysis of Resting-Sate fMRI," Brain Connectivity, vol. 2, pp. A93-94, 2012.
[66]J. O. Ramsay and B. W. Silverman. (2005). Functional Data Analysis (Second edition ed.).
[67]C. R. Maurer, Jr., J. J. McCrory, and J. M. Fitzpatrick, "Estimation of accuracy in localizing externally attached markers in multimodal volume head images," Proc. SPIE 1898, Medical Imaging 1993: Image Processing, vol. 3, pp. 43-54, 1993.
[68]C. R. Maurer, J. M. Fitzpatrick, M. Y. Wang, R. L. Galloway, R. J. Maciunas, and G. S. Allen, "Registration of Head Volume Images Using Implantable Fiducial Markers," IEEE Trans Med Imaing, vol. 16, pp. 447-462, 1997.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top