跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳若齊
研究生(外文):Joe-Chi Wu
論文名稱:蒙古國烏蘭巴托學童重金屬暴露之研究
論文名稱(外文):Study on heavy metals exposures of students in Ulaanbaatar, Mongolia
指導教授:詹長權詹長權引用關係
口試委員:黃耀輝胡素婉黃嵩立
口試日期:2013-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:98
中文關鍵詞:烏蘭巴托空氣汙染尿中鎘尿中鉛蒙古包學童
外文關鍵詞:Ulaanbaatarair pollutionurinary cadmiumurinary leadgerchildren
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:蒙古國首都烏蘭巴托是蒙古國最都市化的城市,在烏蘭巴托市區有許多的
居民居住在傳統的蒙古式建築-蒙古包並聚集形成蒙古包居住區,先前的研
究表示蒙古包和三座火力發電廠使用煤炭和木材燃燒所排放的汙染物質造
成空氣汙染以及在烏蘭巴托採樣PM10 中重金屬濃度有明顯的增加。然而尚
未有在烏蘭巴托進行空氣污染物對人體暴露之研究。因此本研究目的為評
估烏蘭巴托學童重金屬暴露以及辨識潛在的暴露來源。
方法:本研究於烏蘭巴托首都選擇六間學校,以11 至15 歲的320 名學童為研究
對象,並於非燃燒取暖季節(2011 年九月)以及燃燒取暖季節(2011 年12
月和2012 年3 月)進行三次尿液及問卷採樣,收集學童基本資料以及可能和
重金屬暴露有關的因子,並利用感應耦合電漿質譜儀ICP-MS 分析尿中重金
屬濃度(釩、鉻、錳、鎳、銅、砷、鍶、鎘、汞、鉈、鉛),並以廣義估計式
(Generalized Estimating Equations, GEE)模式校正個人基本資料以及環境因
子來評估季節影響蒙古學童尿中重金屬之濃度情形。
結果:以廣義估計式GEE 模式分析,在控制年齡、性別、季節、居住區、抽菸、
有無使用蚊香或殺蟲劑等干擾因子之後,發現居住於蒙古包的學童,其尿
中鎘和鉛濃度顯著高於居住公寓者1.52 和1.46 倍以及居住於磚造屋的學童
尿中釩及鉻濃度顯著高於居住公寓者1.14 和1.15 倍。居住於蒙古包居住區
的學童尿中鎘及鉛濃度顯著高於居住在非蒙古包居住區1.24 和1.23 倍。另
外,模式結果也發現學童尿中銅、砷在燃燒取暖季節的濃度經校正干擾因
子後顯著高於非燃燒取暖季節1.10 和1.20 倍。而學童尿中鎳及鎘濃度在燃
燒取暖季節的濃度顯著低於非燃燒取暖季節0.75 和0.76 倍。
結論:顯示蒙古學童尿中鎘及鉛濃度於蒙古包居住區以及居住在蒙古包皆有顯著
增加,而蒙古學童暴露重金屬的來源無法僅由空氣汙染單一途徑來解釋。

Background:Ulaanbaatar, the capital city of Mongolia, is the most urbanized city of
the country. Many people live in gers, the traditional Mongolian dwellings, in crowded
areas called ger areas, in Ulaanbaatar. Previous studies have shown that air quality was
polluted by emissions from coals and woods used in gers and three coal-fired power
plants and the concentrations of heavy metals in PM10 were elevated in Ulaanbaatar.
However, no study on human exposure to air pollutants has been reported in
Ulaanbaatar yet. The purpose of this study is to evaluate children’s exposure to heavy
metals and identify potential sources of such exposures in Ulaanbaatar.
Methods:Our study subjects were 320 students aged from 11 to 15 years old in 6
schools in Ulaanbaatar. Spot urine samples and questionnaires were collected three
times for each subject in the non-heating season (September in 2011) and heating season
(December in 2011and March in 2012). Personal information and potential heavy
metals exposure-related factors were collected by questionnaire. The levels of urinary
heavy metals, including vanadium, chromium, manganese, nickel, copper, arsenic,
strontium, cadmium, mercury, thallium and lead, were analyzed by inductively coupled
plasma mass spectroscopy (ICP-MS). Generalized Estimating Equation (GEE) modes
were applied to estimate seasonal effects on urinary heavy metals levels, adjusting for
demographic and environmental factors.
Results:According to GEE models, we found that the urinary levels of cadmium and
lead of the children who live in gers were respectively 1.52 and 1.46 times higher than
those of the children living in apartments, after adjusting for age, gender, season, area,
smoking and insecticide use. Urinary levels of vanadium and chromium of the children
who live in brick houses were respectively 1.14 and 1.15 times higher than those of the children living in apartments. Urine cadmium and lead levels for children living in ger
areas were 1.24 and 1.23 times higher than those living in non-ger areas. In addition, we
found that urinary levels of copper and arsenic of the children in the heating season
were respectively 1.10 and 1.20 times higher than in the non-heating season after
adjusting for other exposure-related factors. By contrast, urinary levels of nickel and
cadmium of the children in the heating season were respectively 0.75 and 0.76 times
lower than in the non-heating season.
Conclusions:Mongolian children’s urinary cadmium and lead levels were significantly
increased for those living in ger areas or in gers in Ulaanbaatar. Air pollution was not
the only source of Mongolian children’s exposures to heavy metals.

目 錄

謝辭 i
摘要 I
ABSTRACT III
目 錄 V
圖目錄 VII
表目錄 VIII
第一章 前言及文獻探討 1
1.1 蒙古國烏蘭巴托首都之背景 1
1.2 懸浮微粒與重金屬及其健康效應 5
1.3 重金屬之生物偵測 12
1.4 研究目的 13
第二章 材料與方法 14
2.1 研究設計與架構 14
2.2 烏蘭巴托首都學童暴露採樣策略 17
2.2.1 研究對象 17
2.2.2 問卷資料收集 18
2.2.3 尿液檢體收集 18
2.3 學童尿液重金屬分析 18
2.3.1實驗儀器設備、耗材與試劑 18
2.3.2 尿液重金屬分析步驟與方法 20
2.3.3儀器參數設定 21
2.3.4品質保證與品質控制 22
2.4 問卷變項定義及學童居住位置之分布 24
2.5 數據整理與統計分析 27
第三章 研究結果 29
3.1 烏蘭巴托首都學童之基本資料描述 29
3.2 重複測量GEE模式分析尿中重金屬濃度之結果 31
3.3 烏蘭巴托首都學童之基本資料描述﹣subgroup 35
3.4 烏蘭巴托首都學童之尿中重金屬濃度分布﹣subgroup 37
3.4.1 尿液中重金屬濃度之相關影響因子 37
3.4.2 尿液中重金屬濃度於燃燒取暖季節和非燃燒取暖季節之濃度分布情形 40
3.5 重複測量GEE模式分析尿中重金屬濃度之結果﹣subgroup 42
第四章 討論 45
4.1 烏蘭巴托首都學童尿液中重金屬分布之討論 45
4.2 與國內外重金屬尿液中濃度研究之比較 49
4.3研究限制 51
第五章 結論與建議 53
參考文獻 54
附錄一 問卷 60
附錄二 尿液中重金屬分析之ICP-MS上機標準作業程序 71
附錄三 CHECKLISTS 77



參考文獻
1.Coldest Capital Cities, http://geography.about.com/od/physicalgeography/a/coldcapital.htm
2.Erdenekhuu N. Evaluation on Health Impact of Government Support for GER (Traditional Dwelling) District''s Electricity Night Rates in Ulaanbaatar City. Public Health Theses. 2011;161.
3.Guttikunda S. Urban Air Pollution Analysis for Ulaanbaatar. Washington: World Bank; 2007.
4.Tian H, Wang Y, Xue Z, Qu Y, Chai F, Hao J: Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Sci Total Environ, 2011;409:3078-81.
5.Air Toxics Standards for Utilities, http://www.epa.gov/ttn/atw/utility/utilitypg.html
6.Carreras, H.A., Wannaz, E.D., and Pignata, M.L. Assessment of human health risk related to metals by the use of biomonitors in the province of Cordoba, Argentina. Environ Pollut, 2009. 157(1): 117-22.
7.Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, de la Campa AS, Artinano B et al: Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 2007, 41(34):7219-7231.
8.Wang X, Bi X, Sheng G, Fu J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ Monit Assess. 2006 Aug;119(1-3):425-39.
9.Morishita, M., Keeler, G.J., McDonald, J.D., Wagner, J.G., Young, L.H., Utsunomiya, S., Ewing, R.C., and Harkema, J.R., Source-to-receptor pathways of anthropogenic PM2.5 in Detroit, Michigan: Comparison of two inhalation exposure studies. Atmospheric Environment, 2009. 43(10): 1805-13.
10.袁中新, 高污染空品區室外空氣污染熱區解析與暴露特性分析. 環保署/國科會空污防制科研合作計畫成果完整報告, 94 年度.
11.Zanobetti A, Franklin M, Koutrakis P, Schwartz J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Health. 2009 Dec 21;8:58.
12.Finkelman, R.B., 1995b. Modes of occurrence of environmentally-sensitive trace elements of coal. In: Swaine, D.J., Goodarzi, F. (Eds.), Environmental aspects of trace elements of coal. Kluwer Academic Publishers, the Netherlands, pp. 24–50.
13.Reddy MS, Basha S, Joshi HV, Jha B: Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. Journal of Hazardous Materials 2005, 123: 242-249.
14.Jayasekher, T., Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation. Chemosphere, 2009;75(11):1525-30.
15.Needham, MA . Emissions of Hazardous Air Pollutants from Coal-fired Power Plants. Environmental Health & Engineering, Inc. 2011
16.Streets DG, Hao JM, Wu Y, Jiang JK, Chan M, Tian HZ, et al. Anthropogenic mercury emissions in China. Atmos Environ 2005;39:7789–806.
17.Wang ZJ, Gao YX. Biegeochemical cycling of selenium in Chinese environments. Appl Geochem 2001;16:1345–51.
18.Wu Y, Wang SX, Streets DG. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci Technol 2006;40:5312–8.
19.Wang MS, Yang NN, Zhu JM, Zheng BS. Estimation of arsenic emission from coal combustion in China. Coal Conv 2008a;31(2):1–3 (In Chinese).
20.Batjargal T, Otgonjargal E, Baek K, Yang JS. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J Hazard Mater. 2010 Dec 15;184(1-3):872-6.
21.WHO, Mongolia—Environmental Health Country Profile, WHO, 2005.
22.LungUSA: Toxic Air: The Case for Cleaning Up Coal-fired Power Plants. American Lung Association 2011.
23.Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/.
24.Gunnar F. Nordberg, Burce A. Fowler, Monica Nordberg, and Lars T, F., Handbook on the Toxicology of Metals. Third Edition. 2007.
25.IRAC, http://www.iarc.fr/.
26.郭育良, 職業病概論. 2002.
27.Das KK, Das SN, Dhundasi SA. Nickel, its adverse health effects & oxidative stress. Indian J Med Res. 2008 Oct;128(4):412-25.
28.de Romana DL, Olivares M, Uauy R, Araya M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol. 2011 Jan;25(1):3-13
29.Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF. Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health. 2007 Apr-Jun;13(2):202-12.
30.Lee JS, White KL. A review of the health effects of cadmium. American Journal of Industrial Medicine 1980, 1:307-17.
31.Budnik LT, Baur X. The assessment of environmental and occupational exposure to hazardous substances by biomonitoring. Dtsch Arztebl Int. 2009 Feb;106(6):91-7.
32.謝俊明, 生物偵測, 勞工安全衛生簡訊. 1995, 第九期.
33.Moreno ME, Acosta-Saavedra LC, Meza-Figueroa D, Vera E, Cebrian ME, Ostrosky-Wegman P, Calderon-Aranda ES. Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: A pilot study. Int J Hyg Environ Health. 2010 Jul;213(4):252-8.
34.Wilhelm M, Pesch B, Wittsiepe R, Jakubis P, Miskovic P, Keegan T, Nieuwenhuijsen MJ, Ranft U. Comparison of arsenic levels fingernails with urinary As species as biomarkers of arsenic exposure in residents living close to a coal-burning power plant in Prievidza District, Slovakia. J Expo Anal Env Epid 2005, 15(1):89-98.
35.Chiang WF, Yang HJ, Lung SCC, Huang S, Chiu CY, Liu IL, Tsai CL, Kuo CY. A comparison of elementary schoolchildren''s exposure to arsenic and lead. J Environ Sci Heal C 2008, 26(3):237-255.
36.Chen CY, Yu HW, Zhao JJ, Li B, Qu LY, Liu SP, Zhang PQ, Chai ZF. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Persp 2006, 114(2):297-301.
37.Lightowlers C, Nelson T, Setton E, Peter Keller C. Determining the spatial scale for analysing mobile measurements of air pollution. Atmospheric Environment 2008;42:5933-7.
38.Chen L, Bai Z, Kong S, et al. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. Journal of Environmental Sciences 2010;22:1364-73.
39.Allen RW, Gombojav E, Barkhasragchaa B, Byambaa T, Lkhasuren O, Amram O, Takaro TK, Janes CR. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual Atmos Health. 2013 Mar;6(1):137-150.
40.Nishikawa, Matsui, Batdorj, Jugder, Mori, Shimizu, Sugimoto, and Takahashi. Chemical composition of urban airborne particulate matter in Ulaanbaatar. Atmos Environ. 2011;45(32):5710-15.
41.Wild, P., Kleinjans, J. Children and increased susceptibility to environmental carcinogens: evidence or empathy? Cancer Epidemiol. Biomarkers Prev. 2003 Dec;12(12):1389-94.
42.Souza MJ, Ramsay EC, Donnell RL. Metal Accumulation and Health Effects in Raccoons (Procyon lotor) Associated with Coal Fly Ash Exposure. Arch Environ Contam Toxicol. 2013 May;64(4):529-36.
43.行政院環保署環境檢驗所, 空氣中粒狀污染物金屬檢測方法-感應耦合電漿質譜儀 (NIEA A305.10C)
44.行政院環保署環境檢驗所, 環境檢驗檢量線製備及查核指引 (NIEA-PA103). 2004.
45.行政院環保署環境檢驗所, 環境檢驗方法偵測極限測定指引 (NIEA-PA107). 2004.
46.行政院環保署環境檢驗所, 環境檢驗品管分析執行指引 (NIEA-PA104). 2004.
47.行政院環保署環境檢驗所, 水中金屬及微量元素檢測方法—感應耦合電漿質譜法 (NIEA-W313.51B). 2009.
48.National Statistical Office, 2011, “Population and Housing census-2010”, Ulaanbaatar. http://www.nso.mn
49.黃郁凱, 蒙古國烏倫巴托地區二氧化硫及二氧化氮之汙染與暴露. 國立台灣大學職業醫學與工業衛生研究所碩士論文2012.
50.Hope, B.K., An assessment of the global impact of anthropogenic vanadium. Biogeochemistry, 1997. 37(1):1-13.
51.McConnell JR, Edwards R. Coal burning leaves toxic heavy metal legacy in the Arctic. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12140-4.
52.Lalonde BA, Ernst W, Comeau F. Trace metal concentrations in sediments and fish in the vicinity of ash lagoon discharges from coal-combustion plants in New Brunswick and Nova Scotia, Canada. Arch Environ Contam Toxicol. 2011 Oct;61(3):472-81.
53.Asia Sustainable and Alternative Energy Program (ASTAE). Mongolia: Heating in Poor, Peri-Urban Ger Areas of Ulaanbaatar. October 2009.
54.Itoh H, Iwasaki M, Sawada N, et al. Dietary cadmium intake and breast cancer risk in Japanese women: A case-control study. Int J Hyg Environ Health. 2013 Mar 30. pii: S1438-4639(13)00048-5.
55.Swaddiwudhipong W, Limpatanachote P, Mahasakpan P, Krintratun S, Punta B, Funkhiew T. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: a five-year follow-up. Environ Res. 2012 Jan;112:194-8.
56.Komatsu F, Hasegawa K, Watanabe S, et al. Comparison of electrocardiogram findings and lifestyles between urbanized people and ger-living people in Ulaanbaatar, Mongolia. Atherosclerosis. 2004 Jul;175(1):101-8.
57.Wu G, Yang C, Guo L, Wang Z. Cadmium contamination in Tianjin agricultural soils and sediments: relative importance of atmospheric deposition from coal combustion. Environ Geochem Health. 2013 Jun;35(3):405-16.
58.Antes FG, Duarte FA, Mesko MF, Nunes MA, Pereira VA, Muller EI, Dressler VL, Flores EM. Determination of toxic elements in coal by ICP-MS after digestion using microwave-induced combustion. Talanta. 2010 Dec 15;83(2):364-9.
59.Keegan TJ, Farago ME, Thornton I, Hong B, Colvile RN, Pesch B, Jakubis P, Nieuwenhuijsen MJ. Dispersion of As and selected heavy metals around a coal-burning power station in central Slovakia. Sci Total Environ. 2006 Apr 1;358(1-3):61-71.
60.Aguilera I, Daponte A, Gil F, Hernandez AF, Godoy P, Pla A, Ramos JL. Biomonitoring of urinary metals in a population living in the vicinity of industrial sources: a comparison with the general population of Andalusia, Spain. Science of the Total Environment, 2008. 407(1):669-78.
61.Hoffmann, K., Becker, K., Friedrich, C., Helm, D., Krause, C., and Seifert, B. The German Environmental Survey 1990/1992 (GerES II): cadmium in blood, urine and hair of adults and children. Journal of Exposure Analysis and Environmental Epidemiology. 2000 Mar-Apr;10(2):126-35.
62.邊瑋緒, 詹長權: 六輕離島工業區周界之懸浮微粒及附近居民尿中As、Hg濃度之評估研究. 國立台灣大學職業醫學與工業衛生研究所碩士論文 2011.
63.Vahter M, Akesson A, Liden C, Ceccatelli S, Berglund M. Gender differences in the disposition and toxicity of metals. Environ Res. 2007 May;104(1):85-95.
64.Lin TS, Shen FM. Trace metals in mosquito coil smoke. Bull Environ Contam Toxicol. 2005 Jan;74(1):184-9.
65.Heitland P, Koster HD. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta. 2006 Mar;365(1-2):310-8.
66.Schulz C, Angerer J, Ewers U, Heudorf U, Wilhelm M. Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German environmental survey on children 2003-2006 (GerES IV). Int J Hyg Environ Health. 2009 Nov;212(6):637-47.
67.Caldwell KL, Jones RL, Verdon CP, Jarrett JM, Caudill SP, Osterloh JD. Levels of urinary total and speciated arsenic in the US population: National Health and Nutrition Examination Survey 2003-2004. J Expo Sci Environ Epidemiol. 2009 Jan;19(1):59-68.
68.Paschal DC, Ting BG, Morrow JC, Pirkle JL, Jackson RJ, Sampson EJ, Miller DT, Caldwell KL. Trace metals in urine of United States residents: reference range concentrations. Environ Res. 1998 Jan;76(1):53-9.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top