(35.168.111.204) 您好!臺灣時間:2020/07/04 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:陳人滎
研究生(外文):Jen-Ying Chen
論文名稱:天平秤重艙的建置與應用
論文名稱(外文):The use of a weighing chamber
指導教授:陳志傑陳志傑引用關係
口試委員:鄭福田林文印劉希平蕭大智
口試日期:2013-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:64
中文關鍵詞:濾紙秤重溼度秤重艙靜電微粒偵測極限
外文關鍵詞:gravimetric analysishumidityweighing chamberelectrostatic chargeparticlemass determination limit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在環境與職業衛生領域,粒狀污染物 (Particulate Matter, PM) 漸受重視,且關注的粒狀汙染物粒徑由PM10 轉向粒徑較小的PM2.5,因微粒粒徑小,經濾紙採樣後質量輕,更顯現出微量質量分析精準度之重要。粒狀污染物之質量分析主要以濾紙捕集微粒後再使用天平進行微量分析,由於易受到環境溫溼度及靜電荷等因子干擾,使得微量分析結果產生偏差。其中最常被探討的就是相對溼度之影響,由於秤重環境之溼度控制相對不易,因此本研究建置一天平秤重艙,藉由氯化鎂飽和溶液維持固定蒸汽壓下,提供穩定相對溼度,溫度控制透過天平室內空調與秤重艙進行熱交換後達溫度平衡,此外將濾紙放置於天平秤盤上以Am241去除靜電使得濾紙趨近於電中性,可排除靜電荷對秤重結果精準度的影響。根據長時間對天平秤重艙的監測結果顯示,此一控制方式可使系統保持溫度為18–21℃及相對溼度為31–35%,顯示天平秤重艙是一有效且可行的設備。此外,秤重艙的使用者必須戴手套並調高系統內氣體流率,避免手部水氣破壞系統內穩定相對溼度。待調理濾紙需分裝於儲存盒後開蓋調理,亦或者選擇厚度較薄的濾紙,可加快調理時間。空白與負載微粒之濾紙,在調理與微量分析時暴露於高相對溼度環境 (RH: 75%) 下,空白MCE濾紙有0.5mg質量上升,倘若負載0.5 mg氯化鈉微粒,質量會高估1.2 mg。使用本研究之天平秤重艙控制秤重及調理環境相對溼度在31–35 %,並遵照建議之靜電消除方式,對於一般常用37-mm濾紙負載微粒之微量分析,其質量偵測極限可達到3μg以下。

A reliable gravimetric analysis of particulate matter filters is of great importance in exposure and risk assessment in industrial hygiene and/or environmental health, especially for those fine particles with light weight like PM2.5. Weighing bias may be caused by a number of environmental and operating factors. Among these factors, the humidity effect is the mostly addressed one. This study proposed a cost-effective weighing chamber with humidity control by the use of saturated magnesium chloride solution to meet the USEPA requirements for filter weighing. To exclude the interference of electrostatic charges, filter samples were treated with a radioactive source Am241 on the microbalance pan during weighing. Long term monitoring showed that the relative humidity inside the weighing chamber were between 31–35 % while the temperature were between 18–21 ℃. The air pressure inside the weighing chamber was kept slightly positive by adjusting the supply air of humidity control unit at 15 L/min during filter conditioning and 25 L/min during filter weighing to maintain a stable humidity condition and prevent aerosol contamination from outside. Moreover, the operator should wear gloves to prevent hand moisture evaporation. Filter samples were suggested to be stored and conditioned in the weighing chamber with the filter holder’s lid opened to expedite and enhance the filter conditioning. When a hygroscopic filter, such as MCE, was used to collect 0.5 mg hygroscopic NaCl particles, a mass increased of 0.5 mg was due to the filter, and additional 1.2 mg mass due to collected NaCl particles, which the weighing was performed under RH 75 %, rather than in the weighing chamber. With the use of the weighing chamber and the recommended practices, this study demonstrated an excellent weighing quality and the mass determination limits were below 3 μg for 37-mm particle-laden filter samples commonly encountered in practical situations.

口試委員會審定書......I
致謝......II
摘要......III
Abstract......IV
目錄......VI
圖目錄......IX
表目錄......X
第一章、研究背景與目的......1
1.1 研究背景......1
1.2 研究目的......1
第二章、文獻探討......2
2.1 粒狀汙染物檢測之重要性......2
2.2 影響質量微量分析之因子......2
2.2.1 溫度與相對溼度之......4
2.2.2 相對溼度對濾紙之影響......5
2.2.3 相對溼度對微粒質量微量分析之影響......6
2.2.4 濾紙上靜電荷之干擾......7
2.3 微量秤重分析之環境控制策略......7
2.4 天平秤重艙之設計......8
第三章、研究方法......11
3.1 實驗系統......11
3.1.1 天平秤重艙......11
3.1.2 氯化鎂飽和溶液......12
3.1.3 電子微量天平...... 12
3.1.4 溫溼度量測......13
3.2操作條件......13
3.2.1 溫度對相對溼度之影響......13
3.2.2 去除微粒乾淨空氣流率及測漏測試......13
3.2.3 氣體總體積......14
3.2.4 相對溼度控制箱內之水份添加......14
3.3 濾紙質重微量分析與微粒負載......15
3.4 濾紙調理方式評估......16
3.5 濾紙厚度相關評估......17
3.6 濾紙靜電荷之評估......17
3.7 濾紙表面電阻量測......18
3.8 浮力校正......19
第四章、結果與討論......20
4.1 秤重艙與天秤室內溫度與相對溼度......20
4.2 系統操作條件測試......20
4.2.1 系統測漏......20
4.2.2 系統內氣體流動路徑之總體積......20
4.2.3 系統內氣體流率......21
4.2.4 溫度對系統內相對溼度之影響......21
4.2.5 人體皮膚水氣散失......22
4.2.6 各類天平秤重艙之操作參數最佳化......22
4.3 天平穩定性測試......23
4.4 空白濾紙與微粒質量微量分析......23
4.4.1 空白濾紙調理 ......23
4.4.2 空白濾紙於不同相對溼度下之微量分析......24
4.4.3 不同潮解相對溼度微粒負載之微量分析......25
4.5 濾紙帶靜電荷之效應......25
4.6 各類濾紙表面電阻......27
4.7 環境因子及操作方式對濾紙微量分析及偵測極限之影響......28
第五章、結論與建議......31
參考文獻......33
附錄......61

Adams, J.R., and Merz, A.R. (1929). Hygroscopicity of fertilizer materials and mixtures. Industrial and Engineering Chemistry, 21, 305.
Allen, R., Box, M., and Liu, L.J.S. (2001). A cost-effective weighing chamber for particulate matter filters. Journal of the Air and Waste Management Association, 51, 1650.
American National Standards Institute. (2004). Two-Point Resistance Measurement.
Brown, A.S., Yardley, R.E., Quincey, P.G., and Butterfield, D.M. (2006). Studies of the effect of humidity and other factors on some different filter materials used for gravimetric measurements of ambient particulate matter. Atmospheric Environment, 40, 4670.
Carlton, A.G., and Avraham, T. (2002). Design of a cost-effective weighing facility for PM2.5 quality assurance. Journal of the Air and Waste Management Association, 52, 506.
Clegg, S.L., Brimblecombe, P., and Wexler, A.S. (1998). A thermodynamic model of the system H+-NH4+-Na+-SO42--NO3--Cl--H2O at 298.15 K. Journal of Physical Chemistry, 102, 2155.
Cruz, C.N., and Pandis, S.N. (2000). Deliquescence and Hygroscopic Growth of Mixed Inorganic-Organic Atmospheric Aerosol. Environmental Science and Technology, 34, 4313.
Delfino, R.J., Sioutas, C., and Malik, S. (2005). Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives, 113, 934.
Dubowsky, S.D., Suh, H., Schwartz, J., Coull, B.A., and Gold, D.R. (2006). Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environmental Health Perspectives, 114, 992.
Goto, Y., Hogg, J.C., Shih, C.H., Ishii, H., Vincent, R., and Eeden, S.F.v. (2004). Exposure to ambient particles accelerates monocyte release from bone marrow in atherosclerotic rabbits. American Journal of Physiology: Lung Cellular and Molecular Physiology, 287, L79.
Grigg, J. (2009). Particulate matter exposure in children: relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc, 6, 564.
Hanninen, O.O., Koistinen, K.J., Kousa, A., Keski-Karhu, J., and Jantunen, M.J. (2002). Quantitative Analysis of Environmental Factors in Differential Weighing of Blank Teflon Filters. Journal of the Air & Waste Management Association, 52, 134.
Hinds, W.C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles.
Kunzli, N., Jerrett, M., Mack, W.J., Beckerman, B., LaBree, L., Gilliland, F., Thomas, D., Peters, J., and Hodis, H.N. (2005). Ambient air pollution and atherosclerosis in Los Angeles. Environmental Health Perspectives, 113, 201.
Koistinen, K.J., Kousa, A., Tenhola, V., Hanninen, O., Jantunen, M.J., Oglesby, L., Kuenzli, N., and Georgoulis, L. (1999). Fine particle (PM2.5) measurement methodology, quality assurance procedures, and pilot results of the EXPOLIS study. Journal of the Air & Waste Management Association, 49, 1212.
Lawless, P.A., and Rodes, C.E. (1999). Maximizing data quality in the gravimetric analysis of personal exposure sample filters. Journal of the Air and Waste Management Association, 49, 1039.
Liu, L.J.S., Box, M., Kalman, D., Kaufman, J., Koenig, J., Larson, T., Lumley, T., Sheppard, L., and Wallace, L. (2003). Exposure assessment of particulate matter for susceptible populations in Seattle. Environmental Health Perspectives, 111, 909.
Mcinnes, L.M., Quinn, P.K., Covert, D.S., and Anderson, T.L. (1996). Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmospheric Environment, 30, 869.
Peter, S., Graham, R., and Barry, T. (2002). Accuracy and repeatability of weighing for occupational hygiene measurements: results from an inter-laboratory comparison. Annals of Occupational Hygiene, 46, 693.
Pricea, M., Bulpitt, S., and Meyer, M.B. (2003). A comparison of PM10 monitors at a Kerbside site in the northeast of England. Atmospheric Environment, 37, 4425.
Shaw, M.A., and Rood, M.J. (1990). Measurement of the crystallization humidities of ambient aerosol particles. Atmospheric Environment. Part A. General Topics, 24, 1837.
Takahashi, K., Minoura, H., and Sakamoto, K. (2008). Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter. Atmospheric Environment, 42, 5232.
Tsai, C.J., Chang, C.T., Shih, B.H., Aggarwal, S.G., Li, S.N., Chein, H.M., and Shih, T.S. (2002). The effect of environmental conditions and electrical charge on the weighing accuracy of different filter materials. Science in China, 293, 201.
U.S.EPA. (1998). Quality assutrance guidance document 2.12: monitoring PM2.5 , in ambient air using designated reference or class I equivalent methods.
Winston, P.W., and Bates, D.H. (1960). Saturated solutions for the control of humidity in biological research. Ecology, 41, 232.
行政院勞委會化學品全球調和制度. (2008). 物質安全資料表-氟化鉀.
張士昱和李崇德. (2002). 易潮解無機氣膠含水特性之研究.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔