(3.238.130.97) 您好!臺灣時間:2021/05/13 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡依潔
研究生(外文):Yi-Chieh Tsai
論文名稱:豬第二型環狀病毒致病機制之探討
論文名稱(外文):Immunopathogenesis of Porcine Circovirus Type 2
指導教授:龐飛龐飛引用關係
口試委員:李維誠張志成劉涓
口試日期:2013-05-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:129
中文關鍵詞:第二型環狀病毒致病機制
外文關鍵詞:porcineporcine circovirus type 2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
豬第二型環狀病毒(Porcine circovirus type 2, PCV2)是一小型、無封套、環狀、單股DNA病毒。 PCV2已被證實是豬環狀病毒相關疾病(PCVD或PCVAD)的主要致病原。PCVAD的表現可能是臨床不顯性感染或是包含有一個或多個病徵綜合的臨床表現。組織病理學方面,PCVAD的特徵是患豬體內淋巴器官呈現T- 和B-淋巴細胞流失且伴隨有巨噬細胞浸潤及細胞激素反應的改變。研究顯示PCV2的感染可以成功逃避宿主免疫系統的攻擊,並可在豬隻體內存活很長一段時間而不產生臨床症狀,進而影響宿主的免疫力。
為了瞭解PCV2在PCVAD的形成中所扮演的角色,首先,針對血液單核球及單核球衍生的巨噬細胞以活體外的方式進行PCV2接種後,評估這些細胞的PCV2抗原陽性率、細胞融合率、細胞遷移能力及趨化因子如單核細胞趨化蛋白-1(MCP-1)和巨噬細胞炎性蛋白-1(MIP-1)等(第二章)的mRNA表現以釐清肉芽腫性炎症反應的產生;第二,針對肺泡巨噬細胞及血液單核球,探討感染細胞的吞噬能力、殺菌能力、細胞激素(interleukin, IL),包括 IL-8、組織壞死因子(TNF)-α,干擾素(IFN)-α及FasL的表現(第三章)及先天免疫反應調節基因的表現 (第四章及第五章),以瞭解PCV2如何藉由影響細胞的功能來促進疾病的發展。
研究結果顯示,單獨PCV2即可誘導豬隻單核吞噬細胞增殖、融合及趨化因子的表現。因此,PCV2在誘導PCVAD患豬體內肉芽腫炎症反應的產生上扮演一個顯著的角色(第二章)。在PCV2及豬生殖與呼吸綜合症病毒(porcine reproductive and respiratory syndrome virus, PRRSV) 共同感染的模式中,若豬肺泡巨噬細胞先感染PCV2再感染PRRSV或同時感染PCV2及PRRSV的條件下,會造成細胞PRRSV病毒抗原陽性率、細胞毒殺能力及TNF-α的表現量下降 (第三章)。
研究結果並顯示,來自PCV2臨床不顯性感染豬隻體內的血液單核球,其toll-like receptor (TLR)-9、interferon regulatory factor (IRF)-3、IRF-6、IRF-7、IL-6、IL-12p35、IL-12p40、及IFN-α的mRNA表現量,較健康未帶原豬隻體內血液單核球的表現量,有顯著的較低情形(第四章和第五章)。而在有PCV2重複感染 (第五章)及細菌內毒素LPS的刺激下(第四章),TLRs、IRFs、IL-12及IFN-α的mRNA表現亮,則呈現一個更廣泛且更顯著的降低情形。相反地,NF-κB則不受PCV2重複感染及LPS刺激的影響,其mRNA表現量均呈現穩定向上調控的情形(第四章)。
在本研究中所發現的證據顯示,單獨PCV2即具誘導肉芽腫炎症反應形成的潛能(第二章),臨床上看似健康的不顯性PCV2感染豬隻實際上是處於一種免疫調控異常的狀態(第四章及第五章),而PCV2感染會導致巨噬細胞功能的改變(第三章),此等證據均再一次的證明PCV2感染豬隻的免疫狀態將使其較容易發生二次性細菌及/或病毒的感染,進而衍生成PCVAD患豬。


Abstract
Porcine circovirus type 2 (PCV2) is a small, non-enveloped virus possessing a covalently closed, circular and single-stranded DNA genome. PCV2 has been demonstrated as the major etiologic pathogen of porcine circovirus disease (PCVD) or porcine circovirus-associated disease (PCVAD). PCVD or PCVAD can be subclinical or include 1 or more clinical manifestations of the syndrome. Histopathologically, PCVAD-affected pigs display T- and B-lymphocyte depletion, monocyte (Mo)/macrophage-lineage cell infiltration in lymphoid organs, and altered patterns of cytokine responses. PCV2 infection can remain asymptomatic in pigs for a long period of time by eliciting immune evasion strategies in target cells, which may subsequently lead to the impairment of the host immunity.
To elucidate the possible role of PCV2 in the development of PCVAD, first, the PCV2 antigen-containing rate, cell fusion rate, cell migration, chemokine mRNA expression, such as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1), of target cells (Chapter II) were determined to evaluate the formation of granulomatous inflammation by using blood Mos and Mos-derived macrophages (MDMs); second, the phagocytotic and microbial killing capabilities, cytokine profiles (IL-8, TNF-α, and IFN-α) , FasL transcripts (Chapter III), and innate immune response-modulating genes (Chapter IV and V) were investigated in vitro to elucidate how PCV2 alter and dis-regulate the functions of the target cells to facilitate the disease development by using alveolar macrophage (AMs) and blood Mos, respectively.
It was found that PCV2 alone may induce cell proliferation, fusion, and chemokine expression in swine monocytic cells. Thus, PCV2 itself may play a significant role in the induction of granulomatous inflammation in PCVAD-affected pigs (Chapter II). Swine AMs infected with PCV2 first then PRRSV later or infected with PCV2 and PRRSV simultaneously displayed marked reduction in PRRSV antigen-containing rate, cytopathic effect, and TNF-α expression level (Chapter III).
Under the condition of no further treatment, Mos from pigs with subclinical PCV2 infection displayed significantly lower mRNA expression levels in TLR-9, IRF-3, IRF-6, IRF-7, IL-6, IL-12p35, IL-12p40, and interferon (IFN)-α than those from PCV2-free pigs (Chapter IVand V). A broader and/or more obvious spectrum of significant reduction in TLRs, IRFs, IL-12, and IFN-α were observed following PCV2 superinfection (Chapter V) and LPS stimulation (Chapter IV) in vitro. On the contrary, the mRNA expression level of NF-κB was consistently up-regulated with or without PCV2 superinfection (Chapter V) and LPS stimulation (Chapter IV).
The evidences discovered in the present study suggest that PCV2 alone could induce formation of the granulomatous inflammation (Chapter II), the subclinically PCV2-infected pigs are actually in an immune dis-regulated status (Chapter IV and V), and many of the functions of PCV2-infected macrophages are altered (Chapter III). All of the above mentioned evidences further support the fact that PCV2-infection predisposes the affected pigs to the secondary bacterial and viral infection and leads to the development of PCVAD.








目錄Contents

中文摘要 I
Abstract III


Chapter I General introduction 1

Chapter II 19
The effect of infection order of porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus on dually infected swine alveolar macrophages.
BMC Veterinary Research, 2012,8:174

Chapter III 32
Porcine circovirus type 2 (PCV2) induces cell
proliferation, fusion, and chemokine expression
in swine monocytic cells in vitro
Veterinary Research, 2010, 41(5): 60

Chapter IV 45
Differences in the expression of innate immune response-modulating genes in blood monocytes between subclinically porcine circovirus type 2 (PCV2)-infected and PCV2-free pigs prior to and after lipopolysaccharide stimulation in vitro
Taiwan Veterinary Journal, 2013

Chapter V 74
Dis-regulated expression of innate immune response-modulating genes in blood monocytes of subclinically porcine circovirus type 2 (PCV2)-infected pigs

Manuscript in preparation


Chapter VI 107
General discussion

References
Albina, E., Carrat, C., Charley, B., 1998. Interferon-alpha response to swine arterivirus (PoAV), the porcine reproductive and respiratory syndrome virus. J. Interferon Cytokine Res. 18, 485-490.
Allan, G.M., Ellis, J.A., 2000. Porcine circoviruses: a review. J. Vet. Diagn. Invest. 12, 3-14.
Allan, G.M., McNeilly, F., Ellis, J., Krakowka, S., Meehan, B., McNair, I., Walker, I., Kennedy, S., 2000. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch. Virol. 145, 2421-2429.
Basta, S., Knoetig, S.M., Spagnuolo-Weaver, M., Allan, G., McCullough, K.C., 1999. Modulation of monocytic cell activity and virus susceptibility during differentiation into macrophages. J. Immunol. 162, 3961-3969.
Beutler, B., Cerami, A., 1988. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu. Rev. Biochem. 57, 505-518.
Buddaert, W., Van Reeth, K., Pensaert, M., 1998. In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Adv. Exp. Med. Biol. 440, 461-467.
Byrd, T.F., 1998. Multinucleated giant cell formation induced by IFN-gamma/IL-3 is associated with restriction of virulent Mycobacterium tuberculosis cell to cell invasion in human monocyte monolayers. Cell. Immunol. 188, 89-96.
Chang, H.W., Jeng, C.R., Lin, C.M., Liu, J.J., Chang, C.C., Tsai, Y.C., Chia, M.Y., Pang, V.F., 2007. The involvement of Fas/FasL interaction in porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus co-inoculation-associated lymphocyte apoptosis in vitro. Vet. Microbiol. 122, 72-82.
Chang, H.W., Jeng, C.R., Lin, T.L., Liu, J.J., Chiou, M.T., Tsai, Y.C., Chia, M.Y., Jan, T.R., Pang, V.F., 2006. Immunopathological effects of porcine circovirus type 2 (PCV2) on swine alveolar macrophages by in vitro inoculation. Vet. Immunol. Immunopathol. 110, 207-219.
Chang, H.W., Jeng, C.R., Liu, J.J., Lin, T.L., Chang, C.C., Chia, M.Y., Tsai, Y.C., Pang, V.F., 2005. Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Vet. Microbiol. 108, 167-177.
Chianini, F., Majo, N., Segales, J., Dominguez, J., Domingo, M., 2003. Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet. Immunol. Immunopathol. 94, 63-75.
Chiou, M.T., Jeng, C.R., Chueh, L.L., Cheng, C.H., Pang, V.F., 2000. Effects of porcine reproductive and respiratory syndrome virus (isolate tw91) on porcine alveolar macrophages in vitro. Vet. Microbiol. 71, 9-25.
Darwich, L., Pie, S., Rovira, A., Segales, J., Domingo, M., Oswald, I.P., Mateu, E., 2003. Cytokine mRNA expression profiles in lymphoid tissues of pigs naturally affected by postweaning multisystemic wasting syndrome. J. Gen. Virol. 84, 2117-2125.
DeMeritt, I.B., Podduturi, J.P., Tilley, A.M., Nogalski, M.T., Yurochko, A.D., 2006. Prolonged activation of NF-kappaB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 346, 15-31.
DosReis, G.A., Borges, V.M., 2003. Role of Fas-ligand induced apoptosis in pulmonary inflammation and injury. Current drug targets. Inflamm. Allergy 2, 161-167.
Dosreis, G.A., Borges, V.M., Zin, W.A., 2004. The central role of Fas-ligand cell signaling in inflammatory lung diseases. J. Cell Mol. Med 8, 285-293.
Fine, A., Anderson, N.L., Rothstein, T.L., Williams, M.C., Gochuico, B.R., 1997. Fas expression in pulmonary alveolar type II cells. Am. J. Physiol. 273, L64-71.
Fort, M., Fernandes, L.T., Nofrarias, M., Diaz, I., Sibila, M., Pujols, J., Mateu, E., Segales, J., 2009. Development of cell-mediated immunity to porcine circovirus type 2 (PCV2) in caesarean-derived, colostrum-deprived piglets. Vet. Immunol. Immunopathol. 129, 101-107.
Fujimori, Y., Kataoka, M., Tada, S., Takehara, H., Matsuo, K., Miyake, T., Okahara, M., Yamadori, I., Tanimoto, M., 2003. The role of interleukin-8 in interstitial pneumonia. Respirology 8, 33-40.
Gilpin, D.F., McCullough, K., Meehan, B.M., McNeilly, F., McNair, I., Stevenson, L.S., Foster, J.C., Ellis, J.A., Krakowka, S., Adair, B.M., Allan, G.M., 2003. In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet. Immunol. Immunopathol. 94, 149-161.
Gruber, M.F., Weih, K.A., Boone, E.J., Smith, P.D., Clouse, K.A., 1995. Endogenous macrophage CSF production is associated with viral replication in HIV-1-infected human monocyte-derived macrophages. J. Immunol. 154, 5528-5535.
Haine, V., Fischer-Smith, T., Rappaport, J., 2006. Macrophage colony-stimulating factor in the pathogenesis of HIV infection: potential target for therapeutic intervention. J. Neuroimmune Pharmacol. 1, 32-40.
Harms, P.A., Sorden, S.D., Halbur, P.G., Bolin, S.R., Lager, K.M., Morozov, I., Paul, P.S., 2001. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet. Pathol. 38, 528-539.
Hasslung, F.C., Berg, M., Allan, G.M., Meehan, B.M., McNeilly, F., Fossum, C., 2003. Identification of a sequence from the genome of porcine circovirus type 2 with an inhibitory effect on IFN-alpha production by porcine PBMCs. J. Gen. Virol. 84, 2937-2945.
Herschke, F., Plumet, S., Duhen, T., Azocar, O., Druelle, J., Laine, D., Wild, T.F., Rabourdin-Combe, C., Gerlier, D., Valentin, H., 2007. Cell-cell fusion induced by measles virus amplifies the type I interferon response. J. Virol. 81, 12859-12871.
Hogan, L.H., Weinstock, J.V., Sandor, M., 1999. TCR specificity in infection induced granulomas. Immunol. Lett 68, 115-120.
Honda, K., Ohba, Y., Yanai, H., Negishi, H., Mizutani, T., Takaoka, A., Taya, C., Taniguchi, T., 2005. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035-1040.
James, D.G., 2000. A clinicopathological classification of granulomatous disorders. Postgrad. Med. J. 76, 457-465.
Kekarainen, T., Montoya, M., Mateu, E., Segales, J., 2008. Porcine circovirus type 2-induced interleukin-10 modulates recall antigen responses. J. Gen. Virol. 89, 760-765.
Kidd, P., 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev. 8, 223-246.
Kim, J., Chae, C., 2003. Expression of monocyte chemoattractant protein-1 but not interleukin-8 in granulomatous lesions in lymph nodes from pigs with naturally occurring postweaning multisystemic wasting syndrome. Vet. Pathol. 40, 181-186.
Kim, J., Chung, H.K., Chae, C., 2003. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet. J. 166, 251-256.
Kim, J., Chung, H.K., Jung, T., Cho, W.S., Choi, C., Chae, C., 2002. Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, microscopic lesions and coexisting microorganisms. J. Vet. Med. Sci. 64, 57-62.
Krakowka, S., Ellis, J.A., McNeilly, F., Gilpin, D., Meehan, B., McCullough, K., Allan, G., 2002. Immunologic features of porcine circovirus type 2 infection. Viral. Immunol. 15, 567-582.
Mandrioli, L., Sarli, G., Panarese, S., Baldoni, S., Marcato, P.S., 2004. Apoptosis and proliferative activity in lymph node reaction in postweaning multisystemic wasting syndrome (PMWS). Vet. Immunol. Immunopathol. 97, 25-37.
McNally, A.K., Anderson, J.M., 1995. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol. 147, 1487-1499.
Meylan, E., Tschopp, J., Karin, M., 2006. Intracellular pattern recognition receptors in the host response. Nature 442, 39-44.
Nakamura, F., Andoh, A., Minamiguchi, H., Hodohara, K., Fujiyama, Y., Bamba, T., 1997. A case of interstitial pneumonitis associated with natural alpha-interferon therapy for myelofibrosis. Acta haematol. 97, 222-224.
Nielsen, J., Vincent, I.E., Botner, A., Ladekaer-Mikkelsen, A.S., Allan, G., Summerfield, A., McCullough, K.C., 2003. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet. Immunol. Immunopathol. 92, 97-111.
Opriessnig, T., Gimenez-Lirola, L.G., Halbur, P.G., 2011. Polymicrobial respiratory disease in pigs. Anim. Health Res. Rev. 12, 133-148.
Opriessnig, T., Meng, X.J., Halbur, P.G., 2007. Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J. Vet. Diagn. Invest. 19, 591-615.
Orenstein, J.M., Wahl, S.M., 1999. The macrophage origin of the HIV-expressing multinucleated giant cells in hyperplastic tonsils and adenoids. Ultrastruct. Pathol. 23, 79-91.
Patel, A., Hanson, J., McLean, T.I., Olgiate, J., Hilton, M., Miller, W.E., Bachenheimer, S.L., 1998. Herpes simplex type 1 induction of persistent NF-kappa B nuclear translocation increases the efficiency of virus replication. Virology 247, 212-222.
Raymond, C.R., Wilkie, B.N., 2005. Toll-like receptor, MHC II, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns. Vet. Immunol. Immunopathol. 107, 235-247.
Resendes, A., Segales, J., Balasch, M., Calsamiglia, M., Sibila, M., Ellerbrok, H., Mateu, E., Plana-Duran, J., Mankertz, A., Domingo, M., 2004. Lack of an effect of a commercial vaccine adjuvant on the development of postweaning multisystemic wasting syndrome (PMWS) in porcine circovirus type 2 (PCV2) experimentally infected conventional pigs. Vet. Res. 35, 83-90.
Rosell, C., Segales, J., Plana-Duran, J., Balasch, M., Rodriguez-Arrioja, G.M., Kennedy, S., Allan, G.M., McNeilly, F., Latimer, K.S., Domingo, M., 1999. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J. Comp. Pathol. 120, 59-78.
Roulston, A., Lin, R., Beauparlant, P., Wainberg, M.A., Hiscott, J., 1995. Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-kappa B/Rel transcription factors. Microbiol. Rev. 59, 481-505.
Ruibal-Ares, B., Riera, N.E., de Bracco, M.M., 1997. Macrophages, multinucleated giant cells, and apoptosis in HIV+ patients and normal blood donors. Clin. Immunol. Immunopathol. 82, 102-116.
Ryabchikova, E., Kolesnikova, L., Smolina, M., Tkachev, V., Pereboeva, L., Baranova, S., Grazhdantseva, A., Rassadkin, Y., 1996. Ebola virus infection in guinea pigs: presumable role of granulomatous inflammation in pathogenesis. Arch. Virol. 141, 909-921.
Sarli, G., Mandrioli, L., Laurenti, M., Sidoli, L., Cerati, C., Rolla, G., Marcato, P.S., 2001. Immunohistochemical characterisation of the lymph node reaction in pig post-weaning multisystemic wasting syndrome (PMWS). Vet. Immunol. Immunopathol. 83, 53-67.
Segales, J., Alonso, F., Rosell, C., Pastor, J., Chianini, F., Campos, E., Lopez-Fuertes, L., Quintana, J., Rodriguez-Arrioja, G., Calsamiglia, M., Pujols, J., Dominguez, J., Domingo, M., 2001. Changes in peripheral blood leukocyte populations in pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet. Immunol. Immunopathol. 81, 37-44.
Segales, J., Calsamiglia, M., Olvera, A., Sibila, M., Badiella, L., Domingo, M., 2005. Quantification of porcine circovirus type 2 (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without postweaning multisystemic wasting syndrome (PMWS). Vet. Microbiol. 111, 223-229.
Segales, J., Domingo, M., Chianini, F., Majo, N., Dominguez, J., Darwich, L., Mateu, E., 2004. Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet. Microbiol. 98, 151-158.
Seger, R.A., 2008. Modern management of chronic granulomatous disease. Br. J. Haematol. 140, 255-266.
Seitzer, U., Haas, H., Gerdes, J., 2001. A human in vitro granuloma model for the investigation of multinucleated giant cell and granuloma formation. Histol. Histopathol. 16, 645-653.
Shi, K.C., Guo, X., Ge, X.N., Liu, Q., Yang, H.C., 2010. Cytokine mRNA expression profiles in peripheral blood mononuclear cells from piglets experimentally co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Vet. Microbiol. 140, 155-160.
Shibahara, T., Sato, K., Ishikawa, Y., Kadota, K., 2000. Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. J. Vet. Med. Sci. 62, 1125-1131.
Sipos, W., Duvigneau, J.C., Willheim, M., Schilcher, F., Hartl, R.T., Hofbauer, G., Exel, B., Pietschmann, P., Schmoll, F., 2004. Systemic cytokine profile in feeder pigs suffering from natural postweaning multisystemic wasting syndrome (PMWS) as determined by semiquantitative RT-PCR and flow cytometric intracellular cytokine detection. Vet. Immunol. Immunopathol. 99, 63-71.
Sirinarumitr, T., Sorden, S.D., Morozov, I., Paul, P.S., 2001. Double in situ hybridization for simultaneous detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus (PCV). J. Vet. Diagn. Invest. 13, 68-71.
Trinchieri, G., Sher, A., 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179-190.
Uenishi, H., Shinkai, H., 2009. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 33, 353-361.
Vincent, I.E., Balmelli, C., Meehan, B., Allan, G., Summerfield, A., McCullough, K.C., 2007. Silencing of natural interferon producing cell activation by porcine circovirus type 2 DNA. Immunology 120, 47-56.
Vincent, I.E., Carrasco, C.P., Guzylack-Piriou, L., Herrmann, B., McNeilly, F., Allan, G.M., Summerfield, A., McCullough, K.C., 2005. Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 115, 388-398.
Vincent, I.E., Carrasco, C.P., Herrmann, B., Meehan, B.M., Allan, G.M., Summerfield, A., McCullough, K.C., 2003. Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J. Virol. 77, 13288-13300.
Wang, C., Huang, T.S., Huang, C.C., Tu, C., Jong, M.H., Lin, S.Y., Lai, S.S., 2004. Characterization of porcine circovirus type 2 in Taiwan. J. Vet. Med. Sci. 66, 469-475.
Wei, L., Kwang, J., Wang, J., Shi, L., Yang, B., Li, Y., Liu, J., 2008. Porcine circovirus type 2 induces the activation of nuclear factor kappa B by IkappaBalpha degradation. Virology 378, 177-184.
Yoshihara, K., Nagata, R., Muneta, Y., Inumaru, S., Yokomizo, Y., Mori, Y., 2004. Generation of multinucleated giant cells in vitro from bovine monocytes and macrophages. J Vet Med Sci 66, 1065-1069.
Zhu, F.X., King, S.M., Smith, E.J., Levy, D.E., Yuan, Y., 2002. A Kaposi''s sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. Proc Natl Acad Sci USA 99, 5573-5578.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔