(3.235.245.219) 您好!臺灣時間:2021/05/07 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江水盈
研究生(外文):Shuei-Ying Jiang
論文名稱:探討參與調控噬中性顆粒球產生白血球間素-17之轉錄因子
論文名稱(外文):To Investigate the Transcription Factors Involved in IL-17 Production by Neutrophils in Response to IL-23 Stimulation
指導教授:伍安怡
指導教授(外文):Betty A Wu-Hsieh
口試委員:李建國顧家綺
口試委員(外文):Chien Kuo LeeChia Chi Ku
口試日期:2013-04-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:免疫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:85
中文關鍵詞:白血球間素-17白血球間素-23腹腔細胞Ly6G+ 細胞RORγt
外文關鍵詞:IL-17AIL-23peritoneal cellsLy6G+ cellsRORγt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白血球間素-17 (Interleukin-17, IL-17) 在宿主抵抗病菌中扮演關鍵角色。也有報導指出 IL-17 與自體免疫疾病病因有關。 IL-17為 Th17主要效應細胞激素, IL-23則可維持並擴大 Th17細胞群。對於 Th17細胞的 IL-23/IL-17訊息傳遞路徑已有相當多的研究。近年來越來越多的證據顯示,發炎反應的早期,許多先天免疫細胞會產生 IL-17,且這些細胞多位於與黏膜免疫有關的位置,如腸道、固有層、皮膚、肺等處。當這些先天免疫細胞感受到壓力、損傷或病原入侵時便會產生 IL-17。然而目前對於先天免疫細胞產生 IL-17的調控機制尚不十分清楚。我的研究重點為探討哪些轉錄因子參與調控噬中性顆粒球產生 IL-17。
我的實驗結果顯示未被刺激的 thioglycollate (thio)-elicited peritoneal cells 相較於 naive T 細胞表現較高量的 RORc、 AHR、 IL-23R 及 IL-6R。當 thio-elicited peritoneal cells 接受老鼠重組蛋白 IL-23刺激時,隨著刺激濃度增加、刺激時間增長, thio-elicited peritoneal cells 產生更多 IL-17A。但 IL-23的刺激並沒有增加 thio-elicited peritoneal cells 的 RORa、 RORc、 IRF-4或 AHR 的表現量,這些轉錄因子的 mRNA 表現量光是隨著培養時間增加就會上升。我將 thio-elicited peritoneal cells 利用 MACS 管柱區分為 Ly6G+ 及 Ly6G- 兩群細胞。 IL-23可促進 Ly6G+ 及 Ly6G- 兩群細胞產生 IL-17A,並伴隨著 RORc 的表現。
我比較野生型老鼠 (wild type, WT)、 STAT1 基因剔除鼠 (STAT1 knockout, STAT1 KO) 及 STAT3 基因剔除鼠 (STAT3 knockout, Mx-Cre+ STAT3flox/flox) 來探討噬中性顆粒球產生 IL-17A 時, STAT1 及 STAT3的參與情形。實驗結果顯示 IL-23刺激並不影響 STAT1 KO 或 STAT3 KO 細胞的 RORa、 RORc、 IRF-4和 AHR 表現量;但自 STAT1 KO 小鼠取得的 Ly6G+ 細胞接受 IL-23刺激後, RORa 表現量則比 WT 細胞低。
我亦以老鼠噬中性顆粒球細胞株 (MPRO) 作實驗,測試 MPRO 是否像初代細胞一樣經 IL-23刺激後會產生 IL-17A,以便將來可用以取代初代細胞來研究轉錄因子。我發現 ATRA 刺激後可誘導 MPRO 分化。受 ATRA 刺激的 MPRO 表現 Ly6G 並具有分葉的細胞核,且再接受 PMA 刺激後, MPRO 可產生 ROS。然而即便 ATRA 刺激後, MPRO 仍不表現 IL-23R。分化的 MPRO 接受 PMA 刺激後,再添加或不加 IL-23 刺激,依然不誘導 IL-17A 產生。
綜合上述,我的實驗結果顯示 IL-23誘導 thio-elicited peritoneal cells 以不須依賴 RORa、 RORc、 IRF-4 和 AHR 的方式產生 IL-17A,但是在未受 IL-23刺激的狀況下這些轉錄因子的 mRNA 就會隨著培養時間輕微上升。另外,Ly6G+ 及 Ly6G- 兩群細胞接受 IL-23刺激後,都會產生 IL-17A, 同時 RORc 表現量上升。與 Th17細胞相似,Ly6G+ 及 Ly6G- 兩群細胞當受 IL-23刺激後,均會以 RORγt 依賴方式產生 IL-17A。


Interleukin-17 (IL-17) mediates immune response and plays a crucial role in host defense against mucosal pathogens. It also contributes to the pathogenesis of autoimmune diseases. IL-17 was first discovered as an effector cytokine of Th17, and IL-23 maintains and expands the Th17 subset. The IL-23/IL-17 axis Th17 signaling pathway has been clearly defined. Recently, evidences showed that much of the IL-17 is produced by innate immune cells in the early phase of inflammation. Innate IL-17-producing cells are found to be in the mucosal tissues. They respond to stress, injury, or pathogens before Th17 cell differentiation. The mechanisms by which innate IL-17-producing cells produce IL-17 are still not clear. The aim of my study was to explore the transcription factor(s) involved in regulating neutrophil IL-17A production.
The results of my study showed that thioglycollate (thio)-elicited peritoneal cells expressed higher basal levels of RORc, AHR, IL-23R and IL-6R than naive T cells. Treatment of thio-elicited peritoneal cells with mouse recombinant IL-23 induced IL-17A production in a dose- and time-dependent manner. IL-23 stimulation did not enhance the expressions of RORa, RORc, IRF-4 or AHR. Rather, the mRNA of these transcription factors increased with time in culture. Thio-elicited peritoneal cells were separated into Ly6G+ cells and Ly6G- populations by MACS column. Both Ly6G+ cells and Ly6G- cells produced IL-17A upon stimulation by IL-23 and it was accompanied by an increase of RORc expression.
I compared thio-elicited peritoneal cells from wild type to STAT1 knockout (KO) and to STAT3 knockout mice (Mx-Cre+ STAT3flox/flox) to explore the involvement of STAT1 and STAT3 in neutrophil IL-17A production. The levels of RORα, RORγt, IRF-4 and AHR expression in STAT1 KO or STAT3 KO cells were not affected by IL-23 stimulation with the exception that the level of RORa expression was lower in Ly6G+ cells from STAT1 KO mice than those from wild type mice upon IL-23stimulation.
I also studied mouse neutrophil cell line MPRO IL-17A production after IL-23 stimulation in the hope of replacing primary cells by the cell line for transcription factor studies. I found that stimulation by ATRA induced MPRO differentiation. Stimulated MPRO expressed Ly6G, had segmented nucleus and produced ROS in response to PMA stimulation. However, MPRO did not express IL-23R even after ATRA stimulation. Pre-treatment of differentiated-MPRO with PMA did not induce IL-17A production with or without IL-23 stimulation.
In summary, I demonstrated in this study that IL-23 induced thio-elicited peritoneal cells to produce IL-17A independent of RORa, RORc, IRF-4 and AHR while the mRNA of these transcription factors increased slightly with time in culture even without IL-23 stimulation. Both Ly6G+ and Ly6G- cells stimulated by IL-23 produced IL-17A which was accompanied by RORc up-regulation. It appears that, both Ly6G+ and Ly6G- cells, like Th17 cells, produce IL-17A in a RORγt-dependent manner upon IL-23 stimulation.


致謝……………………………………………………………………………………....i
中文摘要…………………………………………………………………………….......ii
英文摘要……………………………………………………………………………......iv
目錄………………………………………………………………………………….….vi

第一章 緒論…………………………………………………………………………….1
(1) 白血球間素 IL-23及下游信號………………………………………………2
(2) 白血球間素 IL-17……………………………………………………….…... 3
(3) 噬中性顆粒球…………………………………………………………….......12
(4) 實驗動機與目的………………………………………………………….. …14

第二章 實驗材料與方法………………………………………………………...……15
第一部分………………………………………………………...………………......16
1. 實驗用老鼠……………………………………………...……………….......16
2. 抗體……………………………………………...………………...................16
3. 重組蛋白……………………………………………...………………...........17
4. 溶液……………………………………………...………………...................17
5. 化學藥劑和實驗器材…………………………………………...…………...22

第二部分 實驗方法…………………………………………...…………………..24
1. MPRO 繼代、分化及活化……………………………………...…………24
2. 邁格-吉薩姆染色法……………………………………...…………………24
3. 免疫螢光染色……………………………………...……………………….25
4. 分析 ROS 產量……………………………………...……………….…....25
5. 硫乙醇酸鹽誘導腹腔細胞 .……………………………………………….25
6. MACS 純化噬中性顆粒球………………………………….………..……25
7. Naive CD4 T 細胞的分選及 Th17 的分化…..……………………..……26
8. 流式細胞儀分析……………………………………...………………...…..26
9. 酵素連結免疫吸附分析法 (ELISA) ….………….…...……..……..…….27
10. 萃取 RNA 及反轉錄……………………...……………………………...27
11. 定量即時聚合酶鏈鎖反應………………………………………...……...27
12. 統計……………………………………………………………………......27

第三章 實驗結果………………………………………………………………….…..28
IL-23可刺激噬中性顆粒球產生 IL-17A…………………………...………..……29
IL-6 無法使 IL-23刺激的 thio-elicited peritoneal cells 產生更高量的
IL-17A………………………………………………………………..…...…………30
Ly6G+ 細胞及 Ly6G- 細胞被 IL-23刺激後RORγt 的表現量增加…………....30
在 IL-23刺激下 STAT1促使 thio-elicited peritoneal cells IL-17A的生成......…31
在 IL-23刺激下 STAT3抑制 thio-elicited peritoneal cells IL-17A的生成…..…33
誘導 MPRO 分化過程中,可觀察到細胞核逐漸多葉以及表現 Ly6G標誌……35

第四章 討論…………………………………………………………………………...37
IL-23 刺激 thio-elicited peritoneal cells 產生 IL-17A…………………………...38
IL-23 刺激使 Ly6G+ 細胞增加 RORγt mRNA………………………………......39
IL-23 刺激使Ly6G- 細胞增加 RORγt mRNA…………………………...…........41
STAT1和 STAT3調控 IL-23刺激 thio-elicited peritoneal cells 時 IL-17A 的
生成…………………………………………………………………...………..……42
MPRO 細胞株可分化為成熟具有功能的噬中性顆粒球…………………………45
參考文獻……………………………………………………………………………….47
圖表與說明…………………………………………………………………………….58


Barnes, T.C., Anderson, M.E., and Moots, R.J. (2011). The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. International journal of rheumatology 2011, 721608.
Belladonna, M.L., Renauld, J.C., Bianchi, R., Vacca, C., Fallarino, F., Orabona, C., Fioretti, M.C., Grohmann, U., and Puccetti, P. (2002). IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. Journal of immunology 168, 5448-5454.
Bermejo, D.A., Jackson, S.W., Gorosito-Serran, M., Acosta-Rodriguez, E.V., Amezcua-Vesely, M.C., Sather, B.D., Singh, A.K., Khim, S., Mucci, J., Liggitt, D., et al. (2013). Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORgammat and Ahr that leads to IL-17 production by activated B cells. Nature immunology 14, 514-522.
Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238.
Bettelli, E., Sullivan, B., Szabo, S.J., Sobel, R.A., Glimcher, L.H., and Kuchroo, V.K. (2004). Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. The Journal of experimental medicine 200, 79-87.
Brustle, A., Heink, S., Huber, M., Rosenplanter, C., Stadelmann, C., Yu, P., Arpaia, E., Mak, T.W., Kamradt, T., and Lohoff, M. (2007). The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nature immunology 8, 958-966.
Buonocore, S., Ahern, P.P., Uhlig, H.H., Ivanov, II, Littman, D.R., Maloy, K.J., and Powrie, F. (2010). Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371-1375.
Campillo-Gimenez, L., Cumont, M.C., Fay, M., Kared, H., Monceaux, V., Diop, O., Muller-Trutwin, M., Hurtrel, B., Levy, Y., Zaunders, J., et al. (2010). AIDS progression is associated with the emergence of IL-17-producing cells early after simian immunodeficiency virus infection. Journal of immunology 184, 984-992.
Chen, Q., Yang, W., Gupta, S., Biswas, P., Smith, P., Bhagat, G., and Pernis, A.B. (2008). IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by

controlling the activity of IRF-4 transcription factor. Immunity 29, 899-911.
Chen, Z., Laurence, A., Kanno, Y., Pacher-Zavisin, M., Zhu, B.M., Tato, C., Yoshimura, A., Hennighausen, L., and O''Shea, J.J. (2006). Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proceedings of the National Academy of Sciences of the United States of America 103, 8137-8142.
Chinenov, Y., and Rogatsky, I. (2007). Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Molecular and cellular endocrinology 275, 30-42.
Conti, H.R., Shen, F., Nayyar, N., Stocum, E., Sun, J.N., Lindemann, M.J., Ho, A.W., Hai, J.H., Yu, J.J., Jung, J.W., et al. (2009). Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. The Journal of experimental medicine 206, 299-311.
Cua, D.J., and Tato, C.M. (2010). Innate IL-17-producing cells: the sentinels of the immune system. Nature reviews. Immunology 10, 479-489.
Cullere, X., Lauterbach, M., Tsuboi, N., and Mayadas, T.N. (2008). Neutrophil-selective CD18 silencing using RNA interference in vivo. Blood 111, 3591-3598.
Daley, J.M., Thomay, A.A., Connolly, M.D., Reichner, J.S., and Albina, J.E. (2008). Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. Journal of leukocyte biology 83, 64-70.
Dejima, T., Shibata, K., Yamada, H., Hara, H., Iwakura, Y., Naito, S., and Yoshikai, Y. (2011). Protective role of naturally occurring interleukin-17A-producing gammadelta T cells in the lung at the early stage of systemic candidiasis in mice. Infection and immunity 79, 4503-4510.
Durant, L., Watford, W.T., Ramos, H.L., Laurence, A., Vahedi, G., Wei, L., Takahashi, H., Sun, H.W., Kanno, Y., Powrie, F., and O''Shea, J.J. (2010). Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605-615.
Fleming, T.J., Fleming, M.L., and Malek, T.R. (1993). Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to

granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. Journal of immunology 151, 2399-2408.
Gaines, P., Chi, J., and Berliner, N. (2005). Heterogeneity of functional responses in differentiated myeloid cell lines reveals EPRO cells as a valid model of murine neutrophil functional activation. Journal of leukocyte biology 77, 669-679.
Grajewski, R.S., Hansen, A.M., Agarwal, R.K., Kronenberg, M., Sidobre, S., Su, S.B., Silver, P.B., Tsuji, M., Franck, R.W., Lawton, A.P., et al. (2008). Activation of invariant NKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-gamma production and dampening of the adaptive Th1 and Th17 responses. Journal of immunology 181, 4791-4797.
Gresham, H.D., Lowrance, J.H., Caver, T.E., Wilson, B.S., Cheung, A.L., and Lindberg, F.P. (2000). Survival of Staphylococcus aureus inside neutrophils contributes to infection. Journal of immunology 164, 3713-3722.
Halene, S., Gaines, P., Sun, H., Zibello, T., Lin, S., Khanna-Gupta, A., Williams, S.C., Perkins, A., Krause, D., and Berliner, N. (2010). C/EBPepsilon directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx. Experimental hematology 38, 90-103.
Hashimoto, K., Durbin, J.E., Zhou, W., Collins, R.D., Ho, S.B., Kolls, J.K., Dubin, P.J., Sheller, J.R., Goleniewska, K., O''Neal, J.F., et al. (2005). Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. The Journal of allergy and clinical immunology 116, 550-557.
Hestdal, K., Ruscetti, F.W., Ihle, J.N., Jacobsen, S.E., Dubois, C.M., Kopp, W.C., Longo, D.L., and Keller, J.R. (1991). Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. Journal of immunology 147, 22-28.
Hochrein, H., Shortman, K., Vremec, D., Scott, B., Hertzog, P., and O''Keeffe, M. (2001). Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. Journal of immunology 166, 5448-5455.
Hoyler, T., Klose, C.S., Souabni, A., Turqueti-Neves, A., Pfeifer, D., Rawlins, E.L., Voehringer, D., Busslinger, M., and Diefenbach, A. (2012). The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity

37, 634-648.
Huang, W., Na, L., Fidel, P.L., and Schwarzenberger, P. (2004). Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. The Journal of infectious diseases 190, 624-631.
Hue, S., Ahern, P., Buonocore, S., Kullberg, M.C., Cua, D.J., McKenzie, B.S., Powrie, F., and Maloy, K.J. (2006). Interleukin-23 drives innate and T cell-mediated intestinal inflammation. The Journal of experimental medicine 203, 2473-2483.
Ivan, F.X., Welsch, R.E., Chow, V.T., and Rajapakse, J.C. (2011). Estimation of the population of neutrophils induced to differentiate from the MPRO mouse promyelocytic cell line. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2011, 6001-6004.
Ivanov, II, McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133.
Khodarev, N.N., Roizman, B., and Weichselbaum, R.R. (2012). Molecular pathways: interferon/stat1 pathway: role in the tumor resistance to genotoxic stress and aggressive growth. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 3015-3021.
Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y., and Kishimoto, T. (2008). Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proceedings of the National Academy of Sciences of the United States of America 105, 9721-9726.
Kolls, J.K., and Linden, A. (2004). Interleukin-17 family members and inflammation. Immunity 21, 467-476.
Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K., and Iwakura, Y. (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. Journal of immunology 177, 566-573.
Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V.K. (2009). IL-17 and Th17 Cells.

Annual review of immunology 27, 485-517.
Laurence, A., Tato, C.M., Davidson, T.S., Kanno, Y., Chen, Z., Yao, Z., Blank, R.B., Meylan, F., Siegel, R., Hennighausen, L., et al. (2007). Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371-381.
Lazarevic, V., Chen, X., Shim, J.H., Hwang, E.S., Jang, E., Bolm, A.N., Oukka, M., Kuchroo, V.K., and Glimcher, L.H. (2011). T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nature immunology 12, 96-104.
Lee, C.K., Raz, R., Gimeno, R., Gertner, R., Wistinghausen, B., Takeshita, K., DePinho, R.A., and Levy, D.E. (2002). STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63-72.
Li, L., Huang, L., Vergis, A.L., Ye, H., Bajwa, A., Narayan, V., Strieter, R.M., Rosin, D.L., and Okusa, M.D. (2010). IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. The Journal of clinical investigation 120, 331-342.
Liang, S.C., Tan, X.Y., Luxenberg, D.P., Karim, R., Dunussi-Joannopoulos, K., Collins, M., and Fouser, L.A. (2006). Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. The Journal of experimental medicine 203, 2271-2279.
Lochner, M., Peduto, L., Cherrier, M., Sawa, S., Langa, F., Varona, R., Riethmacher, D., Si-Tahar, M., Di Santo, J.P., and Eberl, G. (2008). In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. The Journal of experimental medicine 205, 1381-1393.
Martin, B., Hirota, K., Cua, D.J., Stockinger, B., and Veldhoen, M. (2009). Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321-330.
Michel, M.L., Mendes-da-Cruz, D., Keller, A.C., Lochner, M., Schneider, E., Dy, M., Eberl, G., and Leite-de-Moraes, M.C. (2008). Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 105,

19845-19850.
Moisan, J., Grenningloh, R., Bettelli, E., Oukka, M., and Ho, I.C. (2007). Ets-1 is a negative regulator of Th17 differentiation. The Journal of experimental medicine 204, 2825-2835.
Murphy, C.A., Langrish, C.L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R.A., Sedgwick, J.D., and Cua, D.J. (2003). Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. The Journal of experimental medicine 198, 1951-1957.
Nakae, S., Nambu, A., Sudo, K., and Iwakura, Y. (2003). Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. Journal of immunology 171, 6173-6177.
Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature reviews. Immunology 6, 173-182.
Nguyen, H.V., Mouly, E., Chemin, K., Luinaud, R., Despres, R., Fermand, J.P., Arnulf, B., and Bories, J.C. (2012). The Ets-1 transcription factor is required for Stat1-mediated T-bet expression and IgG2a class switching in mouse B cells. Blood 119, 4174-4181.
Ohmori, Y., and Hamilton, T.A. (2001). Requirement for STAT1 in LPS-induced gene expression in macrophages. Journal of leukocyte biology 69, 598-604.
Oppmann, B., Lesley, R., Blom, B., Timans, J.C., Xu, Y., Hunte, B., Vega, F., Yu, N., Wang, J., Singh, K., et al. (2000). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715-725.
Parham, C., Chirica, M., Timans, J., Vaisberg, E., Travis, M., Cheung, J., Pflanz, S., Zhang, R., Singh, K.P., Vega, F., et al. (2002). A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. Journal of immunology 168, 5699-5708.
Passos, S.T., Silver, J.S., O''Hara, A.C., Sehy, D., Stumhofer, J.S., and Hunter, C.A. (2010). IL-6 promotes NK cell production of IL-17 during toxoplasmosis. Journal of immunology 184, 1776-1783.

Pirhonen, J., Matikainen, S., and Julkunen, I. (2002). Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. Journal of immunology 169, 5673-5678.
Rachitskaya, A.V., Hansen, A.M., Horai, R., Li, Z., Villasmil, R., Luger, D., Nussenblatt, R.B., and Caspi, R.R. (2008). Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. Journal of immunology 180, 5167-5171.
Ribot, J.C., deBarros, A., Pang, D.J., Neves, J.F., Peperzak, V., Roberts, S.J., Girardi, M., Borst, J., Hayday, A.C., Pennington, D.J., and Silva-Santos, B. (2009). CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nature immunology 10, 427-436.
Rohn, T.A., Jennings, G.T., Hernandez, M., Grest, P., Beck, M., Zou, Y., Kopf, M., and Bachmann, M.F. (2006). Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. European journal of immunology 36, 2857-2867.
Sarantis, H., and Gray-Owen, S.D. (2012). Defining the roles of human carcinoembryonic antigen-related cellular adhesion molecules during neutrophil responses to Neisseria gonorrhoeae. Infection and immunity 80, 345-358.
Schuetze, N., Schoeneberger, S., Mueller, U., Freudenberg, M.A., Alber, G., and Straubinger, R.K. (2005). IL-12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages. International immunology 17, 649-659.
Song, C., Luo, L., Lei, Z., Li, B., Liang, Z., Liu, G., Li, D., Zhang, G., Huang, B., and Feng, Z.H. (2008). IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. Journal of immunology 181, 6117-6124.
Stumhofer, J.S., Laurence, A., Wilson, E.H., Huang, E., Tato, C.M., Johnson, L.M., Villarino, A.V., Huang, Q., Yoshimura, A., Sehy, D., et al. (2006). Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nature immunology 7, 937-945.
Sutton, C.E., Lalor, S.J., Sweeney, C.M., Brereton, C.F., Lavelle, E.C., and Mills, K.H. (2009). Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331-341.

Takahashi, N., Vanlaere, I., de Rycke, R., Cauwels, A., Joosten, L.A., Lubberts, E., van den Berg, W.B., and Libert, C. (2008). IL-17 produced by Paneth cells drives TNF-induced shock. The Journal of experimental medicine 205, 1755-1761.
Takatori, H., Kanno, Y., Watford, W.T., Tato, C.M., Weiss, G., Ivanov, II, Littman, D.R., and O''Shea, J.J. (2009). Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. The Journal of experimental medicine 206, 35-41.
Tan, Z., Jiang, R., Wang, X., Wang, Y., Lu, L., Liu, Q., Zheng, S.G., Sun, B., and Ryffel, B. (2013). RORgammat+IL-17+ neutrophils play a critical role in hepatic ischemia-reperfusion injury. Journal of molecular cell biology 5, 143-146.
Tosello Boari, J., Amezcua Vesely, M.C., Bermejo, D.A., Ramello, M.C., Montes, C.L., Cejas, H., Gruppi, A., and Acosta Rodriguez, E.V. (2012). IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS pathogens 8, e1002658.
Tzartos, J.S., Friese, M.A., Craner, M.J., Palace, J., Newcombe, J., Esiri, M.M., and Fugger, L. (2008). Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. The American journal of pathology 172, 146-155.
Uhlig, H.H., McKenzie, B.S., Hue, S., Thompson, C., Joyce-Shaikh, B., Stepankova, R., Robinson, N., Buonocore, S., Tlaskalova-Hogenova, H., Cua, D.J., and Powrie, F. (2006). Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309-318.
Veldhoen, M., Hirota, K., Christensen, J., O''Garra, A., and Stockinger, B. (2009). Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. The Journal of experimental medicine 206, 43-49.
Villarino, A.V., Gallo, E., and Abbas, A.K. (2010). STAT1-activating cytokines limit Th17 responses through both T-bet-dependent and -independent mechanisms. Journal of immunology 185, 6461-6471.
Wang, J.X., Bair, A.M., King, S.L., Shnayder, R., Huang, Y.F., Shieh, C.C., Soberman, R.J., Fuhlbrigge, R.C., and Nigrovic, P.A. (2012). Ly6G ligation blocks recruitment of

neutrophils via a beta2-integrin-dependent mechanism. Blood 120, 1489-1498.
Wei, L., Laurence, A., Elias, K.M., and O''Shea, J.J. (2007). IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. The Journal of biological chemistry 282, 34605-34610.
Werner, J.L., Gessner, M.A., Lilly, L.M., Nelson, M.P., Metz, A.E., Horn, D., Dunaway, C.W., Deshane, J., Chaplin, D.D., Weaver, C.T., et al. (2011). Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infection and immunity 79, 3966-3977.
Wright, H.L., Moots, R.J., Bucknall, R.C., and Edwards, S.W. (2010). Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49, 1618-1631.
Wu, Q., Martin, R.J., Rino, J.G., Breed, R., Torres, R.M., and Chu, H.W. (2007). IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes and infection / Institut Pasteur 9, 78-86.
Wu, S.Y., Yu, J.S., Liu, F.T., Miaw, S.C., and Wu-Hsieh, B.A. (2013). Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. Journal of immunology 190, 3427-3437.
Yang, D., de la Rosa, G., Tewary, P., and Oppenheim, J.J. (2009). Alarmins link neutrophils and dendritic cells. Trends in immunology 30, 531-537.
Yang, X.O., Panopoulos, A.D., Nurieva, R., Chang, S.H., Wang, D., Watowich, S.S., and Dong, C. (2007). STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. The Journal of biological chemistry 282, 9358-9363.
Yang, X.O., Pappu, B.P., Nurieva, R., Akimzhanov, A., Kang, H.S., Chung, Y., Ma, L., Shah, B., Panopoulos, A.D., Schluns, K.S., et al. (2008). T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28, 29-39.
Ye, P., Rodriguez, F.H., Kanaly, S., Stocking, K.L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J., et al. (2001). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor

expression, neutrophil recruitment, and host defense. The Journal of experimental medicine 194, 519-527.
Yipp, B.G., and Kubes, P. (2013). Antibodies against neutrophil LY6G do not inhibit leukocyte recruitment in mice in vivo. Blood 121, 241-242.
Zelante, T., De Luca, A., Bonifazi, P., Montagnoli, C., Bozza, S., Moretti, S., Belladonna, M.L., Vacca, C., Conte, C., Mosci, P., et al. (2007). IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European journal of immunology 37, 2695-2706.
Zhang, F., Meng, G., and Strober, W. (2008). Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nature immunology 9, 1297-1306.
Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E., Leonard, W.J., and Littman, D.R. (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature immunology 8, 967-974.
Zou, J., Presky, D.H., Wu, C.Y., and Gubler, U. (1997). Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. The Journal of biological chemistry 272, 6073-6077.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔