(18.206.238.77) 您好!臺灣時間:2021/05/12 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李曜存
研究生(外文):Yao-Tsun Li
論文名稱:2005-2006年臺灣活禽市場分離鴨流感H5N2病毒特性研究
論文名稱(外文):Virological Characterization of Duck Avian Influenza H5N2 Viruses Isolated in a Live-Bird Market in Taiwan, 2005-2006
指導教授:金傳春金傳春引用關係
口試委員:王金和王萬波林詩舜張明富張淑媛劉銘燦
口試日期:2013-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:74
中文關鍵詞:禽流感病毒病毒監測分子決定因子病毒複製臺灣
外文關鍵詞:Avian Influenza VirusVirological SurveillanceMolecular DeterminantViral ReplicationTaiwan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類感染禽流行性感冒 (簡稱流感) 病毒 (avian influenza virus, AIV),常因為病毒具有跨宿主傳播的潛力,致世人恐於全球性大流行 (pandemic) 的健康威脅。水禽是流行性感冒病毒的主要自然宿主,曾提供往昔全球性大流行病毒株的前驅基因片段。有鑑於家鴨對於流感病毒演化的重要性,活禽市場例行監測所得的流感病毒可有助明瞭病毒演化及宿主趨向性 (host range) 的資訊。近年來,臺灣出現數次雞H5N2病毒疫情。並且,之前研究描述22株自活禽市場鴨群分離的H5N2病毒,八段病毒基因片段中具有不同的演化來源,這些病毒的基礎病毒學特性卻未曾被研究。因此,本研究的目標為:(1) 探討這些具有不同基因組合 (gene constellation) H5N2病毒其複製效率的差異;(2) 比較在哺乳類及禽類細胞中,具有不同表現型 (如;病毒溶斑大小) 的病毒間其生長特性的差異;及 (3) 探討影響病毒表現型差異的分子機轉。

做法是挑選2005至2006年間、代表不同基因組合 [在病毒鹼性聚合酶2 (PB2) 和神經氨酸酶 (NA) 蛋白的核酸基因序列差異 >5%] 的四株鴨流感病毒株 (DV30, DV192, DV413 , DV518) 做為研究對象。首先將此四株病毒感染犬腎細胞MDCK和雞胚纖維細胞DF1,藉由對病毒間質基因的病毒核醣核酸 (M-vRNA) 定量方法,測量被感染細胞其培養液中的核酸產量,觀察病毒的生長狀態。接著嘗試自病毒對於MDCK細胞的溶斑 (plaque) 大小特徵,區分其在哺乳類細胞的表現型;而純化具不同表現型的病毒株,使用50% 組織細胞感染劑量 (TCID50) 再次評估它們對於MDCK及DF1兩不同宿主細胞的動態生長特性。所有的病毒株均會進行基因定序,比較其胺基酸組成。最後,以人類肺癌細胞A549及前述兩細胞測量對於這些病毒株的細胞接合 (cell binding) 的結果,以得知病毒血球凝集素蛋白 (HA) 差異對於細胞接合的影響。並以微基因體實驗 (minigenome assay) 探討不同病毒株的聚合酶活性,研究是否因病毒聚合酶體 (polymerase complex) 胺基酸位點的差異影響病毒生長。

結果顯示此四株鴨H5N2病毒株的生長,在細胞培養液中的核醣核酸表現量相似。然而,DV518病毒株在犬腎細胞MDCK和雞胚纖維細胞DF1的感染,可以觀察到高於其他病毒株的核酸複製數 (copy number)。因DV518和DV413此兩病毒株僅具有三個胺基酸位點的差異,接著探討這些差異是否為影響病毒生長的決定因素。

為進一步了解DV413及DV518病毒株,自DV518病毒株感染的MDCK細胞產生的不同型態病毒溶斑中,純化大、小溶斑兩種不同表現型的病毒株 (518 S 及 518 L)。結果發現DV413較兩株518病毒株在MDCK細胞上產生較小的病毒溶斑。大溶斑的518 L株能在MDCK細胞達到最高的病毒力價,但兩株純化自DV518的病毒對DF1細胞產生相近的病毒量,而DV413則明顯較另兩株病毒為低。於無特定病源 (specific pathogen-free) 雞胚蛋的病毒感染實驗中,三株病毒株表現與DF1細胞有相同的趨勢。

以不同來源的細胞 (A549, MDCK, DF1) 進行細胞接合實驗,結果並沒有發現明顯的受器特異性 (receptor specificity) 特徵。但兩株自DV518純化且均具有HA蛋白170D位點變異的518 S與518 L病毒株,較DV413病毒株在MDCK細胞對於病毒核醣核酸的測量都有比較強的貼附 (核酸複製數的比較p<0.05)。此外,518 L較518 S 具有PB2 蛋白E73D,以及酸性聚合酶 (PA) 蛋白P224S的變異,僅在感染人類腎臟細胞293T後,產生明顯高於518 S的冷光訊號。此研究顯示病毒胺基酸可能存在有特定決定因子參與病毒其在哺乳類細胞複製,指出可能有宿主特異的潛在因子交互作用。

總結,本研究嘗試探討此三株自田野分離之鴨流感H5N2病毒胺基酸特定位點改變與病毒表現型的關係。實驗的結果和過去研究的佐助,顯示保存在鴨子的異質病毒族群中,具有能在哺乳類細胞中相對適應且複製更好的分子決定因素。未來有待藉由反基因技術 (reverse genetic),確認這些特定胺基酸位點對於禽流感病毒進入細胞、病毒複製,以及其與宿主間交互作用的獨立影響。


Human infection with avian influenza viruses (AIV) has always raised global health concern of emerging novel inter-species transmissible virus that might have potential to cause pandemic. Waterfowls, as the predominant nature reservoir of AIV, harbor precursor genetic lineages contributing to viral evolution on past pandemic strains. Routine virological surveillance at live-bird markets (LBMs) can acquire essential information on viral evolution and host range through AIV isolates. In recent years, several outbreaks of H5N2 in chickens occurred in Taiwan. Additionally, previous study identified 22 duck H5N2 viruses from a LBM with different gene origins in eight segments, but their virological properties remained unclear. Therefore, the specific aims of this study were: (1) to investigate the replication efficiencies of those H5N2 isolates with differ ent gene constellations, (2) to compare the growth properties of H5N2 isolates with different viral phenotypes in both avian and mammalian cells, and (3) to elucidate the possible molecular factors contributing to such phenotypic variations.

The four duck H5N2 influenza viruses, DV30, DV192, DV413 and DV518, isolated during 2005-2006 representing distinct gene constellations were selected for their phylogenetic differences in PB2 and NA genes (>5% nucleotide identities). The Madin-Darby Canine Kidney cell (MDCK) and chicken embryo fibroblast cell (DF1) were firstly infected with these viruses to monitor their replication by measuring the levels of viral RNA using real-time polymerase chain reaction (qPCR) targeting viral M gene. Second, viral phenotypes were characterized by the size of plaques in MDCK cells infected with various strains. Besides, the strains possessing different plaque morphologies were further plaque-purified, and 50% tissue culture infectious dose (TCID50) method was performed to evaluate the growth kinetics of viruses in MDCK and DF1 cells. Third, all of the viral strains plaque-purified were sequenced to compare the differences in amino acids. And subsequently, cell binding test with human lung carcinoma cell (A549), MDCK and DF1 cells were investigated. In addition, minigenome assays in 293T and DF1 cells were conducted to clarify possible roles of amino acid changes in viral polymerase complex proteins conferring differences in viral growths.

Results from the growth properties of the four duck H5N2 viruses showed similar replication in M gene of vRNA; however, DV518 had relatively higher levels of the same transcripts in both MDCK and DF1 cell lines among all the four isolates. DV413, which had only three amino acids different from DV518, presented significant lower virus yields than DV518, implying possible underlying determinants of viral growth.

To further investigate the residues between DV413 and DV518, two strains of DV518 were plaque-purified in MDCK cells, and their plaque morphologies together with that of DV413 in MDCK were characterized. Plaques generated by DV413 were smaller than both 518 L, which had large plaque size, and 518 S. Higher virus titers were observed in MDCK cells infected with 518 L strain, than those infected with either 518 S or DV413. However, both of these two strains of 518 showed similar growth kinetics in DF1 cells, whereas DV413 displayed significant lower replication efficiency. Furthermore, viral yield after in ovo inoculation in SPF embryonated chicken eggs also correlated with the results in DF1 cells.

The results of binding assay to assess the receptor specificity of these H5N2 viruses presented no apparent pattern in mammalian and avian cells. However, DV518 isolates, possessing 170D in HA, showed enhanced binding to MDCK cells based on higher levels of attached viral gene (both 518 S v.s. DV413 and 518 L v.s. DV413, p<0.05). In addition, the 518 L, possessing the amino acid substitutions of E72D in PB2 and P224S in PA, demonstrated significant higher polymerase activities by luciferase signals in minigenome assay only in 293T cells but not in DF1 cells than those infected with 518 S virus. These results support that possible molecular determinants may be involved in differences in viral replication in mammalian cells, implying a potential marker associated with host-specific factors.

In summary, this study tried to elucidate the relationship between amino acid changes and phenotypic variations among the three Taiwan duck influenza H5N2 viruses isolated in the field. Our data and supports from previous studies provides important insights on molecular determinants that may also be present in the heterogeneous populations of duck low pathogenic avian influenza viruses, which would be capable to adapt and to replicate better in mammalian cells. Future studies need to use reverse genetics to verify the role of each point mutation identified from this study affecting viral entry, replication, and interaction with host.


口試委員會審定書 #
誌謝 (Acknowledgement) i
中文摘要 (Chinese Abstract) iii
ABSTRACT vi
CONTENTS ix
LIST OF FIGURES xii
LIST OF TABLES xiv
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Structure and function of influenza A virion 3
2.1.1 Polymerase complex and viral RNP 3
2.1.2 Envelope proteins 5
2.1.3 Matrix protein and non-structural (NS) protein 6
2.2 Factors influencing viral pathogenicity of influenza A viruses 7
2.2.1 HA 8
2.2.2 PB2 and other polymerase components 9
2.2.3 NS and other genes 10
2.3 Epidemics of H5N2 11
2.3.1 Outbreaks of H5N2 in the World 12
2.3.2 H5N2 in Taiwan 13
Chapter 3 Objectives, Specific Aims and Hypotheses 15
3.1 Objectives 15
3.2 Specific aims 15
3.3 Hypotheses 15
Chapter 4 Materials and Methods 16
4.1 Viruses 16
4.1.1 Studied viruses through virological surveillance 16
4.1.2 Virus strains used in this study 16
4.1.3 Virus culture 17
4.1.4 Plaque purification of the viruses 18
4.2 Cell culture 18
4.3 Virus sequence and in silico analysis 19
4.3.1 RNA extraction and PCR 19
4.3.2 Sequence analysis 20
4.3.3 Structure modeling 20
4.4 Quantification of influenza virus 20
4.4.1 Plaque assay 20
4.4.2 50% Tissue culture infectious dose (TCID50) 21
4.4.3 Real-time PCR (qPCR) 21
4.5 Replication kinetics 22
4.6 Cell binding test 23
4.7 Minigenome assay 23
4.8 Immunofluorescence assay 24
4.9 Western blotting 24
Chapter 5 Results 26
5.1 Viral sequence analyses of the four Taiwan duck influenza H5N2 viruses 26
5.2 Growth properties of four H5N2 influenza viruses in cultured cells 27
5.3 Two stains of the virus plaque-purified from MDCK cells showed different plaque morphologies 27
5.4 Growth properties of the three strains, DV413, 518 S and 518 L 28
5.5 Sequence analysis of full-genomes of viruses purified 29
5.6 Binding test of DV413 and DV518 strains in cultured cells. 30
5.7 Minigenome assay of two DV518 strains 31
Chapter 6 Discussion 33
6.1 Amino acid residue at the position 170 in HA protein 33
6.2 The amino acid changes in NA and NP proteins 35
6.3 Amino acid changes at vRNP and M proteins 36
6.4 Limitations and implications 38
REFERENCES 40
FIGURES 50
TABLES 68
Appendix: Curriculum Vitae of the Author 74


Abolnik, C. (2007). Molecular characterization of H5N2 avian influenza viruses isolated from South African ostriches in 2006. Avian Dis, 51(4), 873-879.
Akarsu, H., Burmeister, W. P., Petosa, C., Petit, I., Muller, C. W., Ruigrok, R. W., & Baudin, F. (2003). Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J, 22(18), 4646-4655. doi: 10.1093/emboj/cdg449
Alexander, D. J. (2000). A review of avian influenza in different bird species. Vet Microbiol, 74(1-2), 3-13.
Argos, P. (1988). A sequence motif in many polymerases. Nucleic Acids Res, 16(21), 9909-9916.
Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Zaslavsky, L., Tatusova, T., . . . Lipman, D. (2008). The influenza virus resource at the National Center for Biotechnology Information. J Virol, 82(2), 596-601. doi: 10.1128/JVI.02005-07
Beaton, A. R., & Krug, R. M. (1986). Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5'' capped end. Proc Natl Acad Sci U S A, 83(17), 6282-6286.
Blaas, D., Patzelt, E., & Kuechler, E. (1982). Identification of the cap binding protein of influenza virus. Nucleic Acids Res, 10(15), 4803-4812.
Boivin, S., Cusack, S., Ruigrok, R. W., & Hart, D. J. (2010). Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem, 285(37), 28411-28417. doi: 10.1074/jbc.R110.117531
Boivin, Stephane, Cusack, Stephen, Ruigrok, Rob W. H., & Hart, Darren J. (2010). Influenza A Virus Polymerase: Structural Insights into Replication and Host Adaptation Mechanisms. J Biol Chem, 285(37), 28411-28417. doi: 10.1074/jbc.R110.117531
Braam, J., Ulmanen, I., & Krug, R. M. (1983). Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell, 34(2), 609-618.
Bui, M., Whittaker, G., & Helenius, A. (1996). Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol, 70(12), 8391-8401.
Campitelli, L., Mogavero, E., De Marco, M. A., Delogu, M., Puzelli, S., Frezza, F., . . . Donatelli, I. (2004). Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology, 323(1), 24-36. doi: 10.1016/j.virol.2004.02.015
Capua, Ilaria, Marangon, S, Selli, Lucia, Alexander, DJ, Swayne, DE, Pozza, Manuela Dalla, . . . Cancellotti, FM. (1999). Outbreaks of highly pathogenic avian influenza (H5N2) in Italy during October 1997 to January 1998. Avian Pathology, 28(5), 455-460.
Carr, C. M., Chaudhry, C., & Kim, P. S. (1997). Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A, 94(26), 14306-14313.
Chang, Hsin-Yi. (2005). Genetic variation in neuraminidase gene of influenza A/H3N2 virus in northern Taiwan, 2000-2004. (Master), NTU.
Chen, J., Lee, K. H., Steinhauer, D. A., Stevens, D. J., Skehel, J. J., & Wiley, D. C. (1998). Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell, 95(3), 409-417.
Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., . . . Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nat Med, 7(12), 1306-1312. doi: 10.1038/nm1201-1306
Chen, W., Sun, S., & Li, Z. (2012). Two glycosylation sites in H5N1 influenza virus hemagglutinin that affect binding preference by computer-based analysis. PLoS One, 7(6), e38794. doi: 10.1371/journal.pone.0038794
Chen, W., Zhong, Y., Qin, Y., Sun, S., & Li, Z. (2012). The evolutionary pattern of glycosylation sites in influenza virus (H5N1) hemagglutinin and neuraminidase. PLoS One, 7(11), e49224. doi: 10.1371/journal.pone.0049224
Cheng, Ming-Chu. (2012). Isolation and characterization of HPAI (H5N2) viruses in Taiwan in 2012 Paper presented at the Japan, USA and Taiwan Joint conference on Avian Influenza Prevention and Control.
Cheung, C. Y., Poon, L. L., Lau, A. S., Luk, W., Lau, Y. L., Shortridge, K. F., . . . Peiris, J. S. (2002). Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet, 360(9348), 1831-1837.
Chutinimitkul, S., van Riel, D., Munster, V. J., van den Brand, J. M., Rimmelzwaan, G. F., Kuiken, T., . . . de Wit, E. (2010). In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. J Virol, 84(13), 6825-6833. doi: 10.1128/JVI.02737-09
Colman, P. M. (1994). Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci, 3(10), 1687-1696. doi: 10.1002/pro.5560031007
Coloma, R., Valpuesta, J. M., Arranz, R., Carrascosa, J. L., Ortin, J., & Martin-Benito, J. (2009). The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog, 5(6), e1000491. doi: 10.1371/journal.ppat.1000491
Conenello, G. M., Tisoncik, J. R., Rosenzweig, E., Varga, Z. T., Palese, P., & Katze, M. G. (2011). A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol, 85(2), 652-662. doi: 10.1128/JVI.01987-10
Conenello, G. M., Zamarin, D., Perrone, L. A., Tumpey, T., & Palese, P. (2007). A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog, 3(10), 1414-1421. doi: 10.1371/journal.ppat.0030141
Connor, R. J., Kawaoka, Y., Webster, R. G., & Paulson, J. C. (1994). Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 205(1), 17-23. doi: 10.1006/viro.1994.1615
Couceiro, J. N., Paulson, J. C., & Baum, L. G. (1993). Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res, 29(2), 155-165.
Dias, A., Bouvier, D., Crepin, T., McCarthy, A. A., Hart, D. J., Baudin, F., . . . Ruigrok, R. W. (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458(7240), 914-918. doi: 10.1038/nature07745
Dittmann, J., Stertz, S., Grimm, D., Steel, J., Garcia-Sastre, A., Haller, O., & Kochs, G. (2008). Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J Virol, 82(7), 3624-3631. doi: 10.1128/JVI.01753-07
Els, M. C., Air, G. M., Murti, K. G., Webster, R. G., & Laver, W. G. (1985). An 18-amino acid deletion in an influenza neuraminidase. Virology, 142(2), 241-247.
Engelhardt, O. G., & Fodor, E. (2006). Functional association between viral and cellular transcription during influenza virus infection. Rev Med Virol, 16(5), 329-345. doi: 10.1002/rmv.512
Fan, S., Deng, G., Song, J., Tian, G., Suo, Y., Jiang, Y., . . . Chen, H. (2009). Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology, 384(1), 28-32. doi: 10.1016/j.virol.2008.11.044
Flint, SJ, Enquist, LW, Racaniello, VR, & Skalla, AM. (2003). Principle of virology. 2nd: Washington DC: ASM Press.
Fouchier, R. A., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, D., . . . Osterhaus, A. D. (2005). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol, 79(5), 2814-2822. doi: 10.1128/JVI.79.5.2814-2822.2005
Fouchier, R. A., Schneeberger, P. M., Rozendaal, F. W., Broekman, J. M., Kemink, S. A., Munster, V., . . . Osterhaus, A. D. (2004). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A, 101(5), 1356-1361. doi: 10.1073/pnas.0308352100
Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H. D., & Stech, J. (2005). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A, 102(51), 18590-18595. doi: 10.1073/pnas.0507415102
Gabriel, G., Herwig, A., & Klenk, H. D. (2008). Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog, 4(2), e11. doi: 10.1371/journal.ppat.0040011
Gao, P., Watanabe, S., Ito, T., Goto, H., Wells, K., McGregor, M., . . . Kawaoka, Y. (1999). Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol, 73(4), 3184-3189.
Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., . . . Shu, Y. (2013). Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 368(20), 1888-1897. doi: 10.1056/NEJMoa1304459
Gao, Y., Zhang, Y., Shinya, K., Deng, G., Jiang, Y., Li, Z., . . . Chen, H. (2009). Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog, 5(12), e1000709. doi: 10.1371/journal.ppat.1000709
Garcia-Sastre, A. (2001). Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology, 279(2), 375-384. doi: 10.1006/viro.2000.0756
Garcia-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D. E., Durbin, J. E., . . . Muster, T. (1998). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology, 252(2), 324-330.
Garcia, M., Crawford, J. M., Latimer, J. W., Rivera-Cruz, E., & Perdue, M. L. (1996). Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol, 77 ( Pt 7), 1493-1504.
Geiss, G. K., Salvatore, M., Tumpey, T. M., Carter, V. S., Wang, X., Basler, C. F., . . . Garcia-Sastre, A. (2002). Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A, 99(16), 10736-10741. doi: 10.1073/pnas.112338099
Giannecchini, S., Campitelli, L., Calzoletti, L., De Marco, M. A., Azzi, A., & Donatelli, I. (2006). Comparison of in vitro replication features of H7N3 influenza viruses from wild ducks and turkeys: potential implications for interspecies transmission. J Gen Virol, 87(Pt 1), 171-175. doi: 10.1099/vir.0.81187-0
Gonzalez, S., Zurcher, T., & Ortin, J. (1996). Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res, 24(22), 4456-4463.
Guan, Y., Shortridge, K. F., Krauss, S., & Webster, R. G. (1999). Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A, 96(16), 9363-9367.
Gubareva, L. V., Kaiser, L., & Hayden, F. G. (2000). Influenza virus neuraminidase inhibitors. Lancet, 355(9206), 827-835. doi: 10.1016/S0140-6736(99)11433-8
Hale, B. G., Randall, R. E., Ortin, J., & Jackson, D. (2008). The multifunctional NS1 protein of influenza A viruses. J Gen Virol, 89(Pt 10), 2359-2376. doi: 10.1099/vir.0.2008/004606-0
Hall, Tom A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.
Hatta, M., Gao, P., Halfmann, P., & Kawaoka, Y. (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 293(5536), 1840-1842. doi: 10.1126/science.1062882
Herfst, S., Schrauwen, E. J., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V. J., . . . Fouchier, R. A. (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 336(6088), 1534-1541. doi: 10.1126/science.1213362
Hoffmann, E., Stech, J., Guan, Y., Webster, R. G., & Perez, D. R. (2001). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 146(12), 2275-2289.
Horimoto, T., & Kawaoka, Y. (1995). Molecular changes in virulent mutants arising from avirulent avian influenza viruses during replication in 14-day-old embryonated eggs. Virology, 206(1), 755-759.
Horimoto, T., & Kawaoka, Y. (1998). A possible mechanism for selection of virulent avian influenza A viruses in 14-day-old embryonated eggs. J Vet Med Sci, 60(2), 273-275.
Horimoto, T., & Kawaoka, Y. (2001). Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev, 14(1), 129-149. doi: 10.1128/CMR.14.1.129-149.2001
Horimoto, T., & Kawaoka, Y. (2005). Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol, 3(8), 591-600. doi: 10.1038/nrmicro1208
Horimoto, T., Rivera, E., Pearson, J., Senne, D., Krauss, S., Kawaoka, Y., & Webster, R. G. (1995). Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology, 213(1), 223-230. doi: 10.1006/viro.1995.1562
Hsu, W. B., Shih, J. L., Shih, J. R., Du, J. L., Teng, S. C., Huang, L. M., & Wang, W. B. (2013). Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J Virol, 87(1), 110-123. doi: 10.1128/JVI.00939-12
Ilyushina, N. A., Govorkova, E. A., Gray, T. E., Bovin, N. V., & Webster, R. G. (2008). Human-like receptor specificity does not affect the neuraminidase-inhibitor susceptibility of H5N1 influenza viruses. PLoS Pathog, 4(4), e1000043. doi: 10.1371/journal.ppat.1000043
Imai, M., Watanabe, T., Hatta, M., Das, S. C., Ozawa, M., Shinya, K., . . . Kawaoka, Y. (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 486(7403), 420-428. doi: 10.1038/nature10831
Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., . . . Kawaoka, Y. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol, 72(9), 7367-7373.
Ito, T., & Kawaoka, Y. (2000). Host-range barrier of influenza A viruses. Vet Microbiol, 74(1-2), 71-75.
Jackson, D., Hossain, M. J., Hickman, D., Perez, D. R., & Lamb, R. A. (2008). A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A, 105(11), 4381-4386. doi: 10.1073/pnas.0800482105
Jagger, B. W., Wise, H. M., Kash, J. C., Walters, K. A., Wills, N. M., Xiao, Y. L., . . . Digard, P. (2012). An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science, 337(6091), 199-204. doi: 10.1126/science.1222213
Kalthoff, D., Globig, A., & Beer, M. (2010). (Highly pathogenic) avian influenza as a zoonotic agent. Vet Microbiol, 140(3-4), 237-245. doi: 10.1016/j.vetmic.2009.08.022
Kao, C. L., Chan, T. C., Tsai, C. H., Chu, K. Y., Chuang, S. F., Lee, C. C., . . . King, C. C. (2012). Emerged HA and NA mutants of the pandemic influenza H1N1 viruses with increasing epidemiological significance in Taipei and Kaohsiung, Taiwan, 2009-10. PLoS One, 7(2), e31162. doi: 10.1371/journal.pone.0031162
Kao, R. Y., Yang, D., Lau, L. S., Tsui, W. H., Hu, L., Dai, J., . . . Yuen, K. Y. (2010). Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol, 28(6), 600-605. doi: 10.1038/nbt.1638
Kaverin, N. V., Matrosovich, M. N., Gambaryan, A. S., Rudneva, I. A., Shilov, A. A., Varich, N. L., . . . Sinitsin, B. V. (2000). Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtypes. Virus Res, 66(2), 123-129.
Kawaoka, Y., Naeve, C. W., & Webster, R. G. (1984). Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology, 139(2), 303-316.
Kochs, G., Koerner, I., Thiel, L., Kothlow, S., Kaspers, B., Ruggli, N., . . . Staeheli, P. (2007). Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. J Gen Virol, 88(Pt 5), 1403-1409. doi: 10.1099/vir.0.82764-0
Krug, R. M., Yuan, W., Noah, D. L., & Latham, A. G. (2003). Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology, 309(2), 181-189.
Kumari, K., Gulati, S., Smith, D. F., Gulati, U., Cummings, R. D., & Air, G. M. (2007). Receptor binding specificity of recent human H3N2 influenza viruses. Virol J, 4, 42. doi: 10.1186/1743-422X-4-42
Lang, V., Marjuki, H., Krauss, S. L., Webby, R. J., & Webster, R. G. (2011). Different incubation temperatures affect viral polymerase activity and yields of low-pathogenic avian influenza viruses in embryonated chicken eggs. Arch Virol, 156(6), 987-994. doi: 10.1007/s00705-011-0933-z
Lee, C. W., Jung, K., Jadhao, S. J., & Suarez, D. L. (2008). Evaluation of chicken-origin (DF-1) and quail-origin (QT-6) fibroblast cell lines for replication of avian influenza viruses. Journal of Virological Methods, 153(1), 22-28. doi: DOI 10.1016/j.jviromet.2008.06.019
Lee, Chang-Chun. (2008). Molecular Epidemiology of Avian Influenza Viruses in A Live Bird Market in Taiwan during 2005-2006. (Master), National Taiwan University.
Lee, D. C., Mok, C. K., Law, A. H., Peiris, M., & Lau, A. S. (2010). Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells. Virol J, 7, 71. doi: 10.1186/1743-422X-7-71
Lee, J. H., Pascua, P. N., Song, M. S., Baek, Y. H., Kim, C. J., Choi, H. W., . . . Choi, Y. K. (2009). Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea. J Virol, 83(9), 4205-4215. doi: 10.1128/JVI.02403-09
Lee, Shu-Hwae. (2012). The pathology study of chickens naturally infected with highly pathogenic avian influenza virus subtype H5N2 in Taiwan in 2012. Paper presented at the Japan, USA and Taiwan Joint conference on Avian Influenza Prevention and Control.
Li, O. T., Barr, I., Leung, C. Y., Chen, H., Guan, Y., Peiris, J. S., & Poon, L. L. (2007). Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. J Virol Methods, 142(1-2), 218-222. doi: 10.1016/j.jviromet.2007.01.015
Li, O. T., Chan, M. C., Leung, C. S., Chan, R. W., Guan, Y., Nicholls, J. M., & Poon, L. L. (2009). Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation. PLoS One, 4(5), e5658. doi: 10.1371/journal.pone.0005658
Li, Z., Chen, H., Jiao, P., Deng, G., Tian, G., Li, Y., . . . Yu, K. (2005). Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 79(18), 12058-12064. doi: 10.1128/JVI.79.18.12058-12064.2005
Li, Z., Watanabe, T., Hatta, M., Watanabe, S., Nanbo, A., Ozawa, M., . . . Kawaoka, Y. (2009). Mutational analysis of conserved amino acids in the influenza A virus nucleoprotein. J Virol, 83(9), 4153-4162. doi: 10.1128/JVI.02642-08
Lin, Yu-tsun. (2009). Epidemiological analysis of H4N6 viruses isolated from wild ducks and domestic ducks in Taiwan. (Master), NTU.
Lipatov, A. S., Andreansky, S., Webby, R. J., Hulse, D. J., Rehg, J. E., Krauss, S., . . . Sangster, M. Y. (2005). Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. J Gen Virol, 86(Pt 4), 1121-1130. doi: 10.1099/vir.0.80663-0
Malik Peiris, J. S. (2009). Avian influenza viruses in humans. Rev Sci Tech, 28(1), 161-173.
Manz, B., Dornfeld, D., Gotz, V., Zell, R., Zimmermann, P., Haller, O., . . . Schwemmle, M. (2013). Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathog, 9(3), e1003279. doi: 10.1371/journal.ppat.1003279
Martin, K., & Helenius, A. (1991). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell, 67(1), 117-130.
Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A., & Klenk, H. D. (2004). Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol, 78(22), 12665-12667. doi: 10.1128/JVI.78.22.12665-12667.2004
Matrosovich, M., Zhou, N., Kawaoka, Y., & Webster, R. (1999). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol, 73(2), 1146-1155.
McAuley, J. L., Hornung, F., Boyd, K. L., Smith, A. M., McKeon, R., Bennink, J., . . . McCullers, J. A. (2007). Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe, 2(4), 240-249. doi: 10.1016/j.chom.2007.09.001
Medina, R. A., & Garcia-Sastre, A. (2011). Influenza A viruses: new research developments. Nat Rev Microbiol, 9(8), 590-603. doi: 10.1038/nrmicro2613
Mehle, A., & Doudna, J. A. (2009). Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci U S A, 106(50), 21312-21316. doi: 10.1073/pnas.0911915106
Mould, J. A., Drury, J. E., Frings, S. M., Kaupp, U. B., Pekosz, A., Lamb, R. A., & Pinto, L. H. (2000). Permeation and activation of the M2 ion channel of influenza A virus. J Biol Chem, 275(40), 31038-31050. doi: 10.1074/jbc.M003663200
Mukaigawa, J., & Nayak, D. P. (1991). Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol, 65(1), 245-253.
Munier, S., Larcher, T., Cormier-Aline, F., Soubieux, D., Su, B., Guigand, L., . . . Naffakh, N. (2010). A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J Virol, 84(2), 940-952. doi: 10.1128/JVI.01581-09
Neumann, G., Hughes, M. T., & Kawaoka, Y. (2000). Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J, 19(24), 6751-6758. doi: 10.1093/emboj/19.24.6751
Oh, S., McCaffery, J. M., & Eichelberger, M. C. (2000). Dose-dependent changes in influenza virus-infected dendritic cells result in increased allogeneic T-cell proliferation at low, but not high, doses of virus. J Virol, 74(12), 5460-5469.
Ohuchi, M., Asaoka, N., Sakai, T., & Ohuchi, R. (2006). Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect, 8(5), 1287-1293. doi: 10.1016/j.micinf.2005.12.008
Okamatsu, M., Saito, T., Yamamoto, Y., Mase, M., Tsuduku, S., Nakamura, K., . . . Yamaguchi, S. (2007). Low pathogenicity H5N2 avian influenza outbreak in Japan during the 2005-2006. Vet Microbiol, 124(1-2), 35-46. doi: 10.1016/j.vetmic.2007.04.025
Palese, P., Tobita, K., Ueda, M., & Compans, R. W. (1974). Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 61(2), 397-410.
Plotch, S. J., Bouloy, M., Ulmanen, I., & Krug, R. M. (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 23(3), 847-858.
Poch, O., Sauvaget, I., Delarue, M., & Tordo, N. (1989). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J, 8(12), 3867-3874.
Reed, L Jj, & Muench, Hugo. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493-497.
Salomon, R., Franks, J., Govorkova, E. A., Ilyushina, N. A., Yen, H. L., Hulse-Post, D. J., . . . Hoffmann, E. (2006). The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med, 203(3), 689-697. doi: 10.1084/jem.20051938
Schultz-Cherry, S., & Hinshaw, V. S. (1996). Influenza virus neuraminidase activates latent transforming growth factor beta. J Virol, 70(12), 8624-8629.
Seo, S. H., Hoffmann, E., & Webster, R. G. (2002). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med, 8(9), 950-954. doi: 10.1038/nm757
Sha, B., & Luo, M. (1997). Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat Struct Biol, 4(3), 239-244.
Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., & Kawaoka, Y. (2006). Avian flu: influenza virus receptors in the human airway. Nature, 440(7083), 435-436. doi: 10.1038/440435a
Shinya, K., Hamm, S., Hatta, M., Ito, H., Ito, T., & Kawaoka, Y. (2004). PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology, 320(2), 258-266. doi: 10.1016/j.virol.2003.11.030
Skehel, J. J., & Wiley, D. C. (2000). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 69, 531-569. doi: 10.1146/annurev.biochem.69.1.531
Soda, K., Cheng, M. C., Yoshida, H., Endo, M., Lee, S. H., Okamatsu, M., . . . Kida, H. (2011). A low pathogenic H5N2 influenza virus isolated in Taiwan acquired high pathogenicity by consecutive passages in chickens. J Vet Med Sci, 73(6), 767-772.
Song, J., Feng, H., Xu, J., Zhao, D., Shi, J., Li, Y., . . . Chen, H. (2011). The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. J Virol, 85(5), 2180-2188. doi: 10.1128/JVI.01975-10
Stevens, J., Blixt, O., Chen, L. M., Donis, R. O., Paulson, J. C., & Wilson, I. A. (2008). Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J Mol Biol, 381(5), 1382-1394. doi: 10.1016/j.jmb.2008.04.016
Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C., & Wilson, I. A. (2006). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 312(5772), 404-410. doi: 10.1126/science.1124513
Su, B., Wurtzer, S., Rameix-Welti, M. A., Dwyer, D., van der Werf, S., Naffakh, N., . . . Labrosse, B. (2009). Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA). PLoS One, 4(12), e8495. doi: 10.1371/journal.pone.0008495
Subbarao, E. K., London, W., & Murphy, B. R. (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol, 67(4), 1761-1764.
Subbarao, K., Klimov, A., Katz, J., Regnery, H., Lim, W., Hall, H., . . . Cox, N. (1998). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science, 279(5349), 393-396.
Szretter, K. J., Balish, A. L., & Katz, J. M. (2006). Influenza: propagation, quantification, and storage. Curr Protoc Microbiol, Chapter 15, Unit 15G 11. doi: 10.1002/0471729256.mc15g01s3
Takeda, M., Pekosz, A., Shuck, K., Pinto, L. H., & Lamb, R. A. (2002). Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol, 76(3), 1391-1399.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10), 2731-2739. doi: 10.1093/molbev/msr121
Tarendeau, F., Boudet, J., Guilligay, D., Mas, P. J., Bougault, C. M., Boulo, S., . . . Hart, D. J. (2007). Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol, 14(3), 229-233. doi: 10.1038/nsmb1212
Taubenberger, J. K., Baltimore, D., Doherty, P. C., Markel, H., Morens, D. M., Webster, R. G., & Wilson, I. A. (2012). Reconstruction of the 1918 influenza virus: unexpected rewards from the past. MBio, 3(5). doi: 10.1128/mBio.00201-12
Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D. A., Chen, L. M., . . . Donis, R. O. (2012). A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A, 109(11), 4269-4274. doi: 10.1073/pnas.1116200109
Ulmanen, I., Broni, B. A., & Krug, R. M. (1981). Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci U S A, 78(12), 7355-7359.
Vester, D., Rapp, E., Gade, D., Genzel, Y., & Reichl, U. (2009). Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics, 9(12), 3316-3327. doi: 10.1002/pmic.200800893
Wang, W., Lu, B., Zhou, H., Suguitan, A. L., Jr., Cheng, X., Subbarao, K., . . . Jin, H. (2010). Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol, 84(13), 6570-6577. doi: 10.1128/JVI.00221-10
Watanabe, Y., Ibrahim, M. S., Ellakany, H. F., Kawashita, N., Mizuike, R., Hiramatsu, H., . . . Ikuta, K. (2011). Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog, 7(5), e1002068. doi: 10.1371/journal.ppat.1002068
Webster, R. G. (2004). Wet markets--a continuing source of severe acute respiratory syndrome and influenza? Lancet, 363(9404), 234-236. doi: 10.1016/S0140-6736(03)15329-9
Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiol Rev, 56(1), 152-179.
Webster, Robert G, & Krauss, Scott. (2002). WHO manual on animal influenza diagnosis and surveillance: World Health Organization, Department of Communicable Disease Surveillance and Response.
Wiley, D. C., & Skehel, J. J. (1987). The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem, 56, 365-394. doi: 10.1146/annurev.bi.56.070187.002053
Yamada, S., Shinya, K., Takada, A., Ito, T., Suzuki, T., Suzuki, Y., . . . Kawaoka, Y. (2012). Adaptation of a duck influenza A virus in quail. J Virol, 86(3), 1411-1420. doi: 10.1128/JVI.06100-11
Yamada, S., Suzuki, Y., Suzuki, T., Le, M. Q., Nidom, C. A., Sakai-Tagawa, Y., . . . Kawaoka, Y. (2006). Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 444(7117), 378-382. doi: 10.1038/nature05264
Yen, H. L., Aldridge, J. R., Boon, A. C., Ilyushina, N. A., Salomon, R., Hulse-Post, D. J., . . . Webster, R. G. (2009). Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci U S A, 106(1), 286-291. doi: 10.1073/pnas.0811052106
Yen, H. L., Liang, C. H., Wu, C. Y., Forrest, H. L., Ferguson, A., Choy, K. T., . . . Peiris, M. (2011). Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc Natl Acad Sci U S A, 108(34), 14264-14269. doi: 10.1073/pnas.1111000108
Yuan, P., Bartlam, M., Lou, Z., Chen, S., Zhou, J., He, X., . . . Liu, Y. (2009). Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature, 458(7240), 909-913. doi: 10.1038/nature07720
Zaraket, H., Bridges, O. A., & Russell, C. J. (2013). The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice. J Virol, 87(9), 4826-4834. doi: 10.1128/JVI.03110-12
Zhang, Y., Zhang, Q., Kong, H., Jiang, Y., Gao, Y., Deng, G., . . . Chen, H. (2013). H5N1 Hybrid Viruses Bearing 2009/H1N1 Virus Genes Transmit in Guinea Pigs by Respiratory Droplet. Science, 340(6139), 1459-1463. doi: 10.1126/science.1229455
Zimmermann, P., Manz, B., Haller, O., Schwemmle, M., & Kochs, G. (2011). The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J Virol, 85(16), 8133-8140. doi: 10.1128/JVI.00712-11


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔