(3.235.236.13) 您好!臺灣時間:2021/05/15 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉昶宏
研究生(外文):Chang-Hong Yeh
論文名稱:I.FMS樣酪氨酸激酶3複合體之表現、純化及X光小角度散射結構分析II.S2細胞表現的人類蛋白質C之特性分析
論文名稱(外文):I.Expression, Purification and Small-Angle X-ray Scattering Analysis of the FLT3 Ligand-Receptor ComplexII.Characterization of Human Protein C Expressed by S2 cells
指導教授:樓國隆
指導教授(外文):Kuo-Long Lou
口試委員:廖彥銓游偉絢
口試委員(外文):Yen-Chywan LiawWei-Hsuan Yu
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:口腔生物科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:73
中文關鍵詞:FMS樣酪氨酸激酶3 FLT3偶極化可結晶區域片段 Fc region複合體形成X光小角度散射
外文關鍵詞:FMS-like tyrosine kinase receptor 3dimerizationFc regioncomplex formationsmall-angle X-ray scattering.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
FMS樣酪氨酸激酶3 (FMS-like tyrosine kinase 3,FLT3),是一種受體型酪氨酸激酶 (Receptor tyrosine kinase,RTK), 與c-KIT和PDGFR同屬第三型RTK家族,具有RTKIII成員共同的結構:膜外含有五個免疫球蛋白樣結構區(immunoglobulin-like domains, Ig) ,膜內則含有穿膜區 (transmembrane domain)、近膜區 (juxtamenbrane domain)以及激酶區(tyrosine kinase domain)。FLT3配體則具有跨模型與分泌型兩種形態,分泌型可藉由酵素切割與選擇性剪接產生,其結晶結構於2000年解出。當配體與膜外區結合後,受體結構改變發生二聚體化 (dimerization),活化胞內受體酪胺酸激酶(tyrosine kinase)進行自體磷酸化,激發下游訊息分子磷酸化連鎖反應(phosphorylation cascade)。FLT3與其配體FLT3 ligand (FLT3L) 所參與的訊息傳遞路徑在造血幹細胞 (Hematopoietic stem cell,HSCs)、樹突狀細胞 (Dendritic cell,DCs)、和自然殺手細胞 (Natural killer cell,NK cell) 的增殖和分化中起著重要的調節作用。
FLT3在生理上所扮演的角色已逐漸明朗,但在細胞與結構層面上的研究文獻卻很有限。直到2011年,FLT3L與FLT3-D1-D4的複合體及FLT3L與FLT3-ECD的複合體的結晶結構才由Verstaete等人所解出,解析度分別是4.3A與7.8A。但其結晶結構解析度不高並與先前的同源模型有相當程度出入:第一、在受體與配體的相互作用中,FLT3複合體只靠著FLT3-D3與FLT3L做結合。其他的同源受體如c-KIT/SCF複合體及CSFR-1/CSF-1複合體則是由D2與D3環抱偶極化的配體。第二、在FLT3複合體中無法觀察到受體間的相互作用,在c-KIT/SCF 2:2 複合體中,偶極化的配體與受體結合後,會造成受體的構型改變,受體間D4-D4與D5-D5會有相互作用。有鑑於此,我們將FLT3與抗體的Fc區域做嵌合,來模仿受體間偶極化的相互作用並希望能以此增加FLT3L與FLT3的親和力以幫助解析結晶結構。
本研究利用果蠅細胞表現系統表現FLT3L與其多種受體:FLT3胞外全長(FLT3-ECD)、FLT3胞外全長與Fc嵌合體(FLT3-ECD-Fc)、FLT3胞外第二個Ig區域至第五個Ig區域(FLT3-D2-D5)及FLT3胞外第二個Ig區域至第五個Ig區域與Fc嵌合體(FLT3-D2-D5-Fc)。重組蛋白分泌至培養液後,經濃縮、透析、親和層析及膠體層析後可得到高純度蛋白液,並將獲得的蛋白進行液相層析質譜分析、酵素免疫分析與小角度X光散射分析。
我們成功地表現出上述的蛋白並以液相層析質譜分析作確認,之後以酵素免疫分析偵測FLT3L與多種受體的親和力,結果顯示具有Fc嵌合的FLT3確實有增強親和力的情形。我們利用共同培養的方式,將可表現FLT3-Fc嵌合蛋白的細胞與可表現配體的細胞混合,希望可以在分泌至培養基的過程中形成複合體,再利用protein A親和管柱純化,建立了一個快速與省工的方法以獲得FLT3L和FLT3-Fc嵌合蛋白之複合體,在確認獲得複合體後,我們進行小角度X光散射實驗,並利用 ATSAS 套件中的程式分析。目前已得到FLT3L和FLT3-Fc嵌合蛋白之複合體的表面構造(ab-initio envelope)。為了獲得更細節的資訊,我們建立了的養晶系統,希望以結晶結構直觀地分析FLT3的複合體。


FMS-like tyrosine kinase receptor 3 (FLT3) belongs to the type-III RTK (Receptor Tyrosine Kinase) family to which c-KIT and the PDGFR (Platelet Derived Growth Factor Receptor) also belong. They share the same structure: 1) Extracellular domain with five immunoglobulin-like domains, 2) Transmembrane domain, 3) Juxtamembrane domain, 4) Cytoplasmic domain with tyrosine-kinase domain with a kinase insert loop. FLT3 ligand (FLT3L) is biologically active both as a transmembrane form and as a soluble form. Soluble FLT3L can be generated by proteolytic cleavage of the transmembrane ligands and/or alternative splicing. The crystal structure of FLT3L was published in 2000. The binding of FLT3L with its cognate receptor (FLT3) will induce the ligand-mediated receptor dimerization which will activate intracellular tyrosine kinase of receptors undergoing auto-phosphorylation and propagate signal-transduction cascade. FLT3 and its cytokine ligand (FLT3L) play a critical role for hematopoiesis and the immune system.
Although the physiologic role of the FLT3 ligand-receptor interaction has been characterized, the FLT3 signaling complex has remained unclear at the molecular and structural levels. Until 2011, Verstraete et al. reported the low-resolution crystal structures of FLT3L in complex with FLT3-D1-D4 and FLT3-ECD, which resolution is 4.3A and 7.8A, respectively. Further, the results are not consistent with previous homology models and the structural features of RTKIII complex by the following two findings. First, ligand-receptor interactions of FLT3 complex are very different from its homologous counterparts. For the FLT3 complex, the FLT3 ligand only interacts with the D3 (the third Ig-like domain) of FLT3. For c-KIT/SCF complex and CSFR-1/CSF-1 complex, the dimer ligand is embraced by two receptor molecules through D2 and D3 domains. Second, no homotypic interaction between two receptors has been observed in the FLT3 complex. In the c-KIT/SCF 2:2 complex, the binding with dimer of ligand induces the conformational change of receptor through the interactions between D4-D4 and D5-D5 interfaces. Therefore, we constructed Fc fusion protein in order to improve the ligand binding affinity and aid for crystallization.
In this study, recombinant proteins of FLT3 ligand, FLT3-D2-D5 with/without Fc region and FLT3-ECD with/without Fc region were expressed by Drosophila Schneider 2 (S2) cells for functional and structural studies of ligand-receptor interaction After purification procedures (Ni-affinity and gel filtration chromatography), we used mass spectrometry to characterize recombinant proteins and conducted ELISA-based binding assays. Our data revealed an increased binding affinity for FLT3 with Fc region. For the formation of FLT3L/FLT3-Fc complex, we co-culture by mixing the stable line of FLT3L and FLT3-Fc together in an attempt that both of them can form complex during secretion in culture medium. With this new expression approach, we obtain FLT3L/FLT3-Fc complex with one–step purification procedure using Protein A affinity gel. The preliminary shape of FLT3L/FLT3-Fc complex was determined by SAXS with the programs implant in ATSAS. To acquire the more detail information of FLT3 signaling complex, we had tried crystal growing for further study by X-ray crystallography.


口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xiii
Chapter 1 Introduction 1
1.1 Domain structure and features of FLT3 1
1.2 Domain structure and features of FLT3L 1
1.3 The signaling pathway of FLT3 2
1.4 The function of FLT3 3
1.5 FLT3 mutations in haematopoietic malignancies 4
1.5.1 FLT3 internal tandem duplications. 4
1.5.2 FLT3 activation loop mutation. 5
1.6 Current structural knowledge of RTK III receptors interacting with their cognate ligand 5
1.6.1 The structure of c-KIT/SCF complex 6
1.6.2 The structure of CSF-1R/CSF-1 complex 6
1.6.3 The structure of CSF-1R/IL-34 complex 7
1.6.4 The structure of FLT3 complex 7
1.7 FLT3-Fc 8
1.8 Liquid chromatography-mass spectrometry 9
1.9 Small-Angle X-ray Scattering 10
1.10 Aim and purpose 12
Chapter 2 Material & Methods 15
2.1 Materials 15
2.2 Methods 18
2.2.1 Construction of the expression vectors. 18
2.3 Transfection of the plasmid into Schneider 2 cells. 19
2.4 Purification of secreted recombinant protein 20
2.4.1 FLT3L, FLT3-ECD and FLT3-D2-D5 with/without Fc region 20
2.4.2 The complex of FLT3L/ FLT3-Fc 20
2.5 Sample preparation for LC/MS-MS 21
2.6 ELISA-based binding assays 22
2.7 Small-angle X-ray scattering data acquisition and analysis 23
Chapter 3 Results 25
3.1 Construction of expression vectors. 25
3.2 Expression of recombinant proteins in Drosophila Schneider 2 cells 26
3.2.1 Transient expression of recombinant proteins 26
3.2.2 Large-scale expression of recombinant proteins 26
3.3 Purification of recombinant proteins in Drosophila Schneider 2 cells 27
3.3.1 FLT3L 27
3.3.2 FLT3-ECD and FLT3-D2-D5 27
3.3.3 FLT3-ECD and FLT3-D2-D5 with Fc region 28
3.3.4 The complex of FLT3L/FLT3-Fc 28
3.4 Identification of recombinant proteins 29
3.5 ELISA-based Binding assays 30
3.6 SAXS analysis of FLT3L/FLT3-Fc complex 31
3.7 SAXS-based structural modeling of FLT3L/FLT3-Fc complex 32
Chapter 4 Discussions 33
4.1 The formation of complex 33
4.2 Binding affinity 33
REFERENCES 61
APPENDIX 65



1.Rosnet, O., et al., Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics, 1991. 9(2): p. 380-5.
2.Rosnet, O., et al., Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood, 1993. 82(4): p. 1110-9.
3.Mathews, L.S. and W.W. Vale, Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell, 1991. 65(6): p. 973-82.
4.Small, D., et al., STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci U S A, 1994. 91(2): p. 459-63.
5.Rosnet, O. and D. Birnbaum, Hematopoietic receptors of class III receptor-type tyrosine kinases. Crit Rev Oncog, 1993. 4(6): p. 595-613.
6.Carow, C.E., et al., Localization of the human stem cell tyrosine kinase-1 gene (FLT3) to 13q12-->q13. Cytogenet Cell Genet, 1995. 70(3-4): p. 255-7.
7.Lyman, S.D., et al., Characterization of the protein encoded by the flt3 (flk2) receptor-like tyrosine kinase gene. Oncogene, 1993. 8(4): p. 815-22.
8.Rosnet, O., et al., Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia, 1996. 10(2): p. 238-48.
9.Gabbianelli, M., et al., Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood, 1995. 86(5): p. 1661-70.
10.Ratajczak, M.Z., et al., FLT3/FLK-2 (STK-1) Ligand does not stimulate human megakaryopoiesis in vitro. Stem Cells, 1996. 14(1): p. 146-50.
11.Hjertson, M., et al., Stem cell factor, but not flt3 ligand, induces differentiation and activation of human mast cells. Exp Hematol, 1996. 24(6): p. 748-54.
12.Agnes, F., et al., Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. Gene, 1994. 145(2): p. 283-8.
13.Lyman, S.D. and S.E. Jacobsen, c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood, 1998. 91(4): p. 1101-34.
14.Lyman, S.D., et al., Structural analysis of human and murine flt3 ligand genomic loci. Oncogene, 1995. 11(6): p. 1165-72.
15.Hannum, C., et al., Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature, 1994. 368(6472): p. 643-8.
16.Brasel, K., et al., Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia, 1995. 9(7): p. 1212-8.
17.Weisel, K.C., et al., Regulation of FLT3 and its ligand in normal hematopoietic progenitor cells. Ann Hematol, 2009. 88(3): p. 203-11.
18.Gonfloni, S., et al., Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nat Struct Biol, 2000. 7(4): p. 281-6.
19.Turner, A.M., et al., FLT3 receptor expression on the surface of normal and malignant human hematopoietic cells. Blood, 1996. 88(9): p. 3383-90.
20.Griffith, J., et al., The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell, 2004. 13(2): p. 169-78.
21.Markovic, A., K.L. MacKenzie, and R.B. Lock, FLT-3: a new focus in the understanding of acute leukemia. Int J Biochem Cell Biol, 2005. 37(6): p. 1168-72.
22.Dosil, M., S. Wang, and I.R. Lemischka, Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol, 1993. 13(10): p. 6572-85.
23.Rottapel, R., et al., Substrate specificities and identification of a putative binding site for PI3K in the carboxy tail of the murine Flt3 receptor tyrosine kinase. Oncogene, 1994. 9(6): p. 1755-65.
24.Veiby, O.P., S.D. Lyman, and S.E. Jacobsen, Combined signaling through interleukin-7 receptors and flt3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood, 1996. 88(4): p. 1256-65.
25.Shah, A.J., et al., Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38- cells and maintains progenitor cells in vitro. Blood, 1996. 87(9): p. 3563-70.
26.Rusten, L.S., et al., The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro. Blood, 1996. 87(4): p. 1317-25.
27.Moore, T.A. and A. Zlotnik, Differential effects of Flk-2/Flt-3 ligand and stem cell factor on murine thymic progenitor cells. J Immunol, 1997. 158(9): p. 4187-92.
28.Waskow, C., et al., The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol, 2008. 9(6): p. 676-83.
29.Carow, C.E., et al., Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood, 1996. 87(3): p. 1089-96.
30.Nakao, M., et al., Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia, 1996. 10(12): p. 1911-8.
31.Yamamoto, Y., et al., Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood, 2001. 97(8): p. 2434-9.
32.Stirewalt, D.L., et al., Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood, 2006. 107(9): p. 3724-6.
33.Kiyoi, H., et al., Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia, 1998. 12(9): p. 1333-7.
34.Kiyoi, H., et al., Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene, 2002. 21(16): p. 2555-63.
35.Stirewalt, D.L. and J.P. Radich, The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003. 3(9): p. 650-65.
36.Hirota, S., et al., Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998. 279(5350): p. 577-80.
37.Mizuki, M., et al., Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood, 2000. 96(12): p. 3907-14.
38.Thiede, C., et al., Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood, 2002. 99(12): p. 4326-35.
39.Spiekermann, K., et al., A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood, 2002. 100(9): p. 3423-5.
40.Choudhary, C., et al., AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood, 2005. 106(1): p. 265-73.
41.Grundler, R., et al., FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood, 2005. 105(12): p. 4792-9.
42.Yuzawa, S., et al., Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell, 2007. 130(2): p. 323-34.
43.Lin, H., et al., Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science, 2008. 320(5877): p. 807-11.
44.Chen, X., et al., Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc Natl Acad Sci U S A, 2008. 105(47): p. 18267-72.
45.Ma, X., et al., Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure, 2012. 20(4): p. 676-87.
46.Liu, H., et al., The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta, 2012. 1824(7): p. 938-45.
47.Verstraete, K., et al., Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood, 2011. 118(1): p. 60-8.
48.Beck, A. and J.M. Reichert, Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs, 2011. 3(5): p. 415-6.
49.Holash, J., et al., VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11393-8.
50.Jain, R.K., et al., Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol, 2006. 3(1): p. 24-40.
51.Benucci, M., et al., Tumor necrosis factors blocking agents: analogies and differences. Acta Biomed, 2012. 83(1): p. 72-80.
52.Annesley, T.M., Ion suppression in mass spectrometry. Clin Chem, 2003. 49(7): p. 1041-4.
53.Dmitri, I.S. and H.J.K. Michel, Small-angle scattering studies of biological macromolecules in solution. Reports on Progress in Physics, 2003. 66(10): p. 1735.
54.Svergun, D., Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 1992. 25(4): p. 495-503.
55.Aretz, S., et al., In-depth mass spectrometric mapping of the human vitreous proteome. Proteome Sci, 2013. 11(1): p. 22.
56.Konarev, P.V., et al., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography, 2003. 36(5): p. 1277-1282.
57.Konarev, P.V., et al., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography, 2003. 36: p. 1277-1282.
58.Svergun, D.I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J, 1999. 76(6): p. 2879-86.
59.Franke, D. and D.I. Svergun, DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of Applied Crystallography, 2009. 42(2): p. 342-346.
60.Volkov, V.V. and D.I. Svergun, Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography, 2003. 36(3 Part 1): p. 860-864.
61.Wriggers, W., Conventions and workflows for using Situs. Acta Crystallographica Section D, 2012. 68(4): p. 344-351.
62.Petoukhov, M.V. and D.I. Svergun, Global Rigid Body Modeling of Macromolecular Complexes against Small-Angle Scattering Data. Biophysical journal, 2005. 89(2): p. 1237-1250.
63.Vandenborre, G., et al., Glycosylation signatures in Drosophila: fishing with lectins. J Proteome Res, 2010. 9(6): p. 3235-42.
64.Savvides, S.N., T. Boone, and P. Andrew Karplus, Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots. Nat Struct Biol, 2000. 7(6): p. 486-91.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top