|
1.Rosnet, O., et al., Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics, 1991. 9(2): p. 380-5. 2.Rosnet, O., et al., Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood, 1993. 82(4): p. 1110-9. 3.Mathews, L.S. and W.W. Vale, Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell, 1991. 65(6): p. 973-82. 4.Small, D., et al., STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci U S A, 1994. 91(2): p. 459-63. 5.Rosnet, O. and D. Birnbaum, Hematopoietic receptors of class III receptor-type tyrosine kinases. Crit Rev Oncog, 1993. 4(6): p. 595-613. 6.Carow, C.E., et al., Localization of the human stem cell tyrosine kinase-1 gene (FLT3) to 13q12-->q13. Cytogenet Cell Genet, 1995. 70(3-4): p. 255-7. 7.Lyman, S.D., et al., Characterization of the protein encoded by the flt3 (flk2) receptor-like tyrosine kinase gene. Oncogene, 1993. 8(4): p. 815-22. 8.Rosnet, O., et al., Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia, 1996. 10(2): p. 238-48. 9.Gabbianelli, M., et al., Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood, 1995. 86(5): p. 1661-70. 10.Ratajczak, M.Z., et al., FLT3/FLK-2 (STK-1) Ligand does not stimulate human megakaryopoiesis in vitro. Stem Cells, 1996. 14(1): p. 146-50. 11.Hjertson, M., et al., Stem cell factor, but not flt3 ligand, induces differentiation and activation of human mast cells. Exp Hematol, 1996. 24(6): p. 748-54. 12.Agnes, F., et al., Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. Gene, 1994. 145(2): p. 283-8. 13.Lyman, S.D. and S.E. Jacobsen, c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood, 1998. 91(4): p. 1101-34. 14.Lyman, S.D., et al., Structural analysis of human and murine flt3 ligand genomic loci. Oncogene, 1995. 11(6): p. 1165-72. 15.Hannum, C., et al., Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature, 1994. 368(6472): p. 643-8. 16.Brasel, K., et al., Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia, 1995. 9(7): p. 1212-8. 17.Weisel, K.C., et al., Regulation of FLT3 and its ligand in normal hematopoietic progenitor cells. Ann Hematol, 2009. 88(3): p. 203-11. 18.Gonfloni, S., et al., Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nat Struct Biol, 2000. 7(4): p. 281-6. 19.Turner, A.M., et al., FLT3 receptor expression on the surface of normal and malignant human hematopoietic cells. Blood, 1996. 88(9): p. 3383-90. 20.Griffith, J., et al., The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell, 2004. 13(2): p. 169-78. 21.Markovic, A., K.L. MacKenzie, and R.B. Lock, FLT-3: a new focus in the understanding of acute leukemia. Int J Biochem Cell Biol, 2005. 37(6): p. 1168-72. 22.Dosil, M., S. Wang, and I.R. Lemischka, Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol, 1993. 13(10): p. 6572-85. 23.Rottapel, R., et al., Substrate specificities and identification of a putative binding site for PI3K in the carboxy tail of the murine Flt3 receptor tyrosine kinase. Oncogene, 1994. 9(6): p. 1755-65. 24.Veiby, O.P., S.D. Lyman, and S.E. Jacobsen, Combined signaling through interleukin-7 receptors and flt3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood, 1996. 88(4): p. 1256-65. 25.Shah, A.J., et al., Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38- cells and maintains progenitor cells in vitro. Blood, 1996. 87(9): p. 3563-70. 26.Rusten, L.S., et al., The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro. Blood, 1996. 87(4): p. 1317-25. 27.Moore, T.A. and A. Zlotnik, Differential effects of Flk-2/Flt-3 ligand and stem cell factor on murine thymic progenitor cells. J Immunol, 1997. 158(9): p. 4187-92. 28.Waskow, C., et al., The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol, 2008. 9(6): p. 676-83. 29.Carow, C.E., et al., Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood, 1996. 87(3): p. 1089-96. 30.Nakao, M., et al., Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia, 1996. 10(12): p. 1911-8. 31.Yamamoto, Y., et al., Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood, 2001. 97(8): p. 2434-9. 32.Stirewalt, D.L., et al., Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood, 2006. 107(9): p. 3724-6. 33.Kiyoi, H., et al., Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia, 1998. 12(9): p. 1333-7. 34.Kiyoi, H., et al., Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene, 2002. 21(16): p. 2555-63. 35.Stirewalt, D.L. and J.P. Radich, The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003. 3(9): p. 650-65. 36.Hirota, S., et al., Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998. 279(5350): p. 577-80. 37.Mizuki, M., et al., Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood, 2000. 96(12): p. 3907-14. 38.Thiede, C., et al., Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood, 2002. 99(12): p. 4326-35. 39.Spiekermann, K., et al., A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood, 2002. 100(9): p. 3423-5. 40.Choudhary, C., et al., AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood, 2005. 106(1): p. 265-73. 41.Grundler, R., et al., FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood, 2005. 105(12): p. 4792-9. 42.Yuzawa, S., et al., Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell, 2007. 130(2): p. 323-34. 43.Lin, H., et al., Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science, 2008. 320(5877): p. 807-11. 44.Chen, X., et al., Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc Natl Acad Sci U S A, 2008. 105(47): p. 18267-72. 45.Ma, X., et al., Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure, 2012. 20(4): p. 676-87. 46.Liu, H., et al., The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta, 2012. 1824(7): p. 938-45. 47.Verstraete, K., et al., Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood, 2011. 118(1): p. 60-8. 48.Beck, A. and J.M. Reichert, Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs, 2011. 3(5): p. 415-6. 49.Holash, J., et al., VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11393-8. 50.Jain, R.K., et al., Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol, 2006. 3(1): p. 24-40. 51.Benucci, M., et al., Tumor necrosis factors blocking agents: analogies and differences. Acta Biomed, 2012. 83(1): p. 72-80. 52.Annesley, T.M., Ion suppression in mass spectrometry. Clin Chem, 2003. 49(7): p. 1041-4. 53.Dmitri, I.S. and H.J.K. Michel, Small-angle scattering studies of biological macromolecules in solution. Reports on Progress in Physics, 2003. 66(10): p. 1735. 54.Svergun, D., Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 1992. 25(4): p. 495-503. 55.Aretz, S., et al., In-depth mass spectrometric mapping of the human vitreous proteome. Proteome Sci, 2013. 11(1): p. 22. 56.Konarev, P.V., et al., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography, 2003. 36(5): p. 1277-1282. 57.Konarev, P.V., et al., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography, 2003. 36: p. 1277-1282. 58.Svergun, D.I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J, 1999. 76(6): p. 2879-86. 59.Franke, D. and D.I. Svergun, DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of Applied Crystallography, 2009. 42(2): p. 342-346. 60.Volkov, V.V. and D.I. Svergun, Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography, 2003. 36(3 Part 1): p. 860-864. 61.Wriggers, W., Conventions and workflows for using Situs. Acta Crystallographica Section D, 2012. 68(4): p. 344-351. 62.Petoukhov, M.V. and D.I. Svergun, Global Rigid Body Modeling of Macromolecular Complexes against Small-Angle Scattering Data. Biophysical journal, 2005. 89(2): p. 1237-1250. 63.Vandenborre, G., et al., Glycosylation signatures in Drosophila: fishing with lectins. J Proteome Res, 2010. 9(6): p. 3235-42. 64.Savvides, S.N., T. Boone, and P. Andrew Karplus, Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots. Nat Struct Biol, 2000. 7(6): p. 486-91.
|