(3.238.98.214) 您好!臺灣時間:2021/05/08 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳煒堯
研究生(外文):Wei-Yao Chen
論文名稱:SIK蛋白異構體在分泌腺體上的功能特異性
論文名稱(外文):Functional Characterization of Salt-Inducible Kinases in Secretory Glands
指導教授:周涵怡
指導教授(外文):Han-Yi E. Chou
口試委員:李心予丁詩同
口試日期:2013-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:口腔生物科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:77
中文關鍵詞:SIK腎上腺DCVY1細胞分泌
外文關鍵詞:SIKAdrenal GlandDCVY1 cellsecretion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
AMPK被認為參與在人體的恆定,而AMPK family其中的SIKs一開始在高鹽餵食的大鼠腎上腺被發現,同時也藉由磷酸化輔因子TORC2使其將其留在細胞質而無法進入細胞核內,CREB ( cAMP-response element-binding protein )這個轉錄因子就可以被SIKs調控,藉由CREB與TORC2的結合以調控醣類、蛋白質、脂質等的合成及細胞存活。SIKs同時也藉由調控動植物細胞的離子進出進行離子的恆定。而在2012年Aguilera實驗室所發表的研究中指出,SIKs可能會在相同器官相同刺激下表現量都會上升只是時間點不同,並且扮演類似的角色。因此我們合理懷疑在高鹽餵食下的大鼠腎上腺,表現量上升的並不只是SIK1。免疫組織染色可以確定SIK在腎上腺上的蛋白表現量和位置。我們的研究結果顯示,SIK2在腎上腺的髓質和皮質的束狀帶細胞有大量表現,此外SIK2在腎上腺皮質束狀帶分泌細胞上具有不同的酵素活性表現。由以上我們可以確定SIK2確實參與腎上腺皮質束狀帶細胞的分泌作用。接下來我選用小鼠腎上腺皮質束狀帶細胞株Y1進行定量PCR和西方墨點法來確定SIKs在Y1中確實有穩定表現,接著我利用免疫螢光染色發現了SIK2與緻密核心的囊泡的標記蛋白Rab27A位置重疊,確定了SIK2在Y1中存在於緻密核心的囊泡上,並且藉由ACTH的刺激證明了我們在Y1發現的緻密核心的囊泡有參與生理上的調節,但是囊泡中攜帶的是什麼尚無研究,這也是下一步我們實驗室想了解的。

AMPK is involved in the maintenance of energy balance in human body. Salt-inducible kinases (SIK1/2/3 isoforms) belong to the AMP-activated protein kinase (AMPK) family, and were first cloned from the adrenal glands of rats fed with high salt diet. Through phosphorylation and subsequent cytoplasmic sequestration of the coactivator TORC2, SIKs can down-regulate transcriptional activation of the cAMP-response element-binding protein CREB. This SIK-dependent transcriptional regulation has been shown to be an important determinant for survival and protein, lipid and carbohydrate produce. SIKs also control iron homeostasis via regulate intracellular iron balance. in Aguilera’s lab, the paper published in 2012 showed that there is cooperation and sequential induction of SIK1 and SIK2 in neuron. Under stimulated, SIK1 and SIK2 will be induced in different time at the same organ. Base on the reference, was SIK2 also induced from the adrenal glands of rats fed with high salt diet? Immunohistochemistry approaches were used to determine the protein expression profile of all three SIK isoforms. In additional, SIK2 kinase activity is involved in its DCV function. Next, the western blotting and Quantitative PCR in Y1 mouse adrenocortical zona fasciculata tumor cell demonstrated that Y1 cell is a suitable cell line model for studying SIK2 function. Then, the Immunofluorescence staining showed that punctate distribution of SIK2 in cytoplasm resembling vesicles and SIK2 colocalization with DCV marker Rab27A.Thus, we suggest that SIK2 might play a dominant role in DCV secretion of adrenal cortex zone fasciculata. ACTH treatment induced SIKs express level and kinase activity changed. Further studies on the vesicle contain is the next step in our lab research.

口試審定書
致謝
中文摘要………………………………………………………………… i
ABSTRACT…………………………………………………………… ii
CONTENTS…………………………………………………………… iii
INTREDUCTION
-Maintenance of homeostasis in the human body…………………1
-AMPK Family members are involved in homeostasis……………2
-The property characteristic of Salt-inducible kinase family………3
-The composition and importance of adrenal gland……………5
-Hypothalamus-pituitary-adrenal axis regulation………………6
-Y1 adrenocortical cell lines………………………………………7
-SIK2-pS587 is the substrate of PKA ………………………………8
-SIK2-pS587 is SIK2 kinase inactive form ………………………9
-Vesicle marker Rab27A and phogrin………………………………10
-TROC2 mediates synergistic effects of calcium and cAMP pathways on CREB activation ………………………………………………11
-Hypothesis…………………………………………………………12

MATERIALS AND METHODS
-Cell culture and transfection………………………………………13
-DNA constructs and antibody……………………………………13
-Immunofluorescence staining……………………………………14
-Immunohistochemisry of frozen section on slide…………………15
-Immunohistochemisry of paraffin section on slide………………16
-Western blot analysis………………………………………………17
-RNA extraction and RT-PCR………………………………………17
-Quantitative PCR…………………………………………………18
-Cell sorting ………………………………………………………18
-ACTH treatment……………………………………………………19
-Hormone precipitation……………………………………………19

RESULTS
-The expression level and location of SIK isoforms in adrenal gland………………………………………………………………20
-Differential mRNA and protein expression level of SIKs in vitro………………………………………………………………23
-Cellular localization of SIKs in Y1 cell……………………………24
-SIK2-pS587 is expressed in Y1 cell………………………………25
-PKA and AMPK inhibitor treatment in Y1 cell……………………27
-pTimer-phogrin transfected Y1 cells Dynamic photography………27
-Differential distributions of SIK isoforms were induced by ACTH treatment at Y1 cell ……………………………………………28

DISCUSSION……………………………………………………………30
FUTURE WORK………………………………………………………35
REFERENCES…………………………………………………………37
FIGURE LEGENDS
-Figure 1. SIK isoforms are expressed in adrenal gland……………45
-Figure 2. Adrenal glands is isolated from mouse and immunostain with SIK2 antibodies by immunohistochemistry…… 46
-Figure 3. Adrenal glands is isolated from mouse and immunostain with SIK2-pS587 and SIK2-pT175 antibodies by immunohistochemistry…………………………………………47
-Figure 4. The expression level of SIKs mRNA in Y1 cell…………48
-Figure 5. Testing the western blotting of different SIK2 antibodies…………………………………………………………49
-Figure 6. Testing the Western blotting of different SIK isoforms antibodies…………………………………………………50
-Figure 7. Cellular localization of SIK Isoforms in Y1 cell.…………………………………………………………………51
-Figure 8. Colocalization of SIK2-Cterminal and phogrin marker Rab27a………………………………………………………52
-Figure 9. Western blotting of SIK2 antibodies in different cell line…………………………………………………………………53
-Figure 10. Differential Distribution of Kinase Active (T175) and Kinase Inactive (S587) SIK2 Proteins……… …………54
-Figure 11. The PKA and SIK2 inhibitor treatment of SIK2-pS587…………………………………………………………55
-Figure 12. pTimer transfected Y1 cells dynamic photography…………………………………………………………56
-Figure 13. The SIK isoforms are differential distributions of ACTH treatment at Y1 cell…………………………………………57
-Figure 14. pTimer transfected Y1 cells sorting………………………58
-Figure 15.The expression level of OXR mRNA in Y1 cell…………59

SUPPLEMENTARY DATA
-Supplmentary 1. Rab27a cofractionates with SIK2…………………60
-Supplmentary 2. The PKA and SIK2 inhibitor doze test……………61
-Supplmentary 3. The phosphorylation of SIK2-S587 at the reaction of Flag-SIK2-WT with ATP only was diminished by adding selective PKA inhibitor……………………………………62
-Supplmentary 4. The SIK2 and SIK2-pS587 expressed in different glands………………………………………………………63
-Supplmentary 5. The hypothsis in our lab……………………………64
-Supplmentary 6. Rodent adrenal steroid biosynthetic pathways for the production of aldosterone and corticosterone………………65
-Supplmentary 7. Aligement of differental species (human,rat and mouse) in SIK1 RNAi…………………………………………66
-Supplmentary 8. Aligement of differental species (human,rat and mouse) in SIK2 RNAi…………………………………………67
-Supplmentary 9. Aligement of differental species (human,rat and mouse) in SIK3 RNAi…………………………………………68

APPENDIX
-APPENDIX 1. Target of AMPK and their biologic effects…………69
-APPENDIX 2. Isoforms of salt-inducible kinase…………………70
-APPENDIX 3. Salt sensing in plant cells…………………………71
-APPENDIX 4. The location of SIK isoform mRNA level…………72
-APPENDIX 5. The location of SIK isoform protein level…………73
-APPENDIX 6. The adrenal gland cortex function and composition…………………………………………………………74
-APPENDIX 7. Phosphorylation and nucleocytoplasmic translocation of SIK1 are important to regulate the initiation of steroidogenesis……………………………………………………75
-APPENDIX 8. The consensus around SIKs-S587 and SIKs-T175 are highly conserved……………………………………76
-APPENDIX 9. Reported Regulation on SIK2 ………………………77




1K. Aguan, J. Scott, C. G. See, and N. H. Sarkar, ''Characterization and Chromosomal Localization of the Human Homologue of a Rat Amp-Activated Protein Kinase-Encoding Gene: A Major Regulator of Lipid Metabolism in Mammals'', Gene, 149 (1994), 345-50.
2M. M. Assifi, G. Suchankova, S. Constant, M. Prentki, A. K. Saha, and N. B. Ruderman, ''Amp-Activated Protein Kinase and Coordination of Hepatic Fatty Acid Metabolism of Starved/Carbohydrate-Refed Rats'', Am J Physiol Endocrinol Metab, 289 (2005), E794-800.
3D. C. Barral, J. S. Ramalho, R. Anders, A. N. Hume, H. J. Knapton, T. Tolmachova, L. M. Collinson, D. Goulding, K. S. Authi, and M. C. Seabra, ''Functional Redundancy of Rab27 Proteins and the Pathogenesis of Griscelli Syndrome'', J Clin Invest, 110 (2002), 247-57.
4R. Berdeaux, N. Goebel, L. Banaszynski, H. Takemori, T. Wandless, G. D. Shelton, and M. Montminy, ''Sik1 Is a Class Ii Hdac Kinase That Promotes Survival of Skeletal Myocytes'', Nat Med, 13 (2007), 597-603.
5R. K. Beri, A. E. Marley, C. G. See, W. F. Sopwith, K. Aguan, D. Carling, J. Scott, and F. Carey, ''Molecular Cloning, Expression and Chromosomal Localisation of Human Amp-Activated Protein Kinase'', FEBS Lett, 356 (1994), 117-21.
6A. M. Bertorello, and J. K. Zhu, ''Sik1/Sos2 Networks: Decoding Sodium Signals Via Calcium-Responsive Protein Kinase Pathways'', Pflugers Arch, 458 (2009), 613-9.
7J. Bricambert, J. Miranda, F. Benhamed, J. Girard, C. Postic, and R. Dentin, ''Salt-Inducible Kinase 2 Links Transcriptional Coactivator P300 Phosphorylation to the Prevention of Chrebp-Dependent Hepatic Steatosis in Mice'', J Clin Invest, 120 (2010), 4316-31.
8L. A. Caromile, A. Oganesian, S. A. Coats, R. A. Seifert, and D. F. Bowen-Pope, ''The Neurosecretory Vesicle Protein Phogrin Functions as a Phosphatidylinositol Phosphatase to Regulate Insulin Secretion'', J Biol Chem, 285 (2010), 10487-96.
9Q. Chen, N. Klemm, and I. M. Jeng, ''Irreversible Inactivation of Diacylglycerol Kinase-Ii Requires a Mediator'', Biochem Int, 25 (1991), 775-81.
10S. Choi, W. Kim, and J. Chung, ''Drosophila Salt-Inducible Kinase (Sik) Regulates Starvation Resistance through Camp-Response Element-Binding Protein (Creb)-Regulated Transcription Coactivator (Crtc)'', J Biol Chem, 286 (2011), 2658-64.
11A. I. Cohen, E. Bloch, and E. Celozzi, ''In Vitro Response of Functional Experimental Adrenal Tumors to Corticotropin Acth'', Proc Soc Exp Biol Med, 95 (1957), 304-9.
12L. J. Cuprak, C. J. Lammi, and J. I. Crane, ''Improved Basal Medium for Y-1 Mouse Adrenal Cortex Tumor Cells in Culture. I. Dependence of Growth and Steroid Response on Calcium Ion Concentration'', In Vitro, 15 (1979), 900-9.
13R. Dentin, Y. Liu, S. H. Koo, S. Hedrick, T. Vargas, J. Heredia, J. Yates, 3rd, and M. Montminy, ''Insulin Modulates Gluconeogenesis by Inhibition of the Coactivator Torc2'', Nature, 449 (2007), 366-9.
14K. Dorovini-Zis, and A. P. Zis, ''Innervation of the Zona Fasciculata of the Adult Human Adrenal Cortex: A Light and Electron Microscopic Study'', J Neural Transm Gen Sect, 84 (1991), 75-84.
15J. R. Dyck, N. Kudo, A. J. Barr, S. P. Davies, D. G. Hardie, and G. D. Lopaschuk, ''Phosphorylation Control of Cardiac Acetyl-Coa Carboxylase by Camp-Dependent Protein Kinase and 5''-Amp Activated Protein Kinase'', Eur J Biochem, 262 (1999), 184-90.
16K. Eneling, J. Chen, L. C. Welch, H. Takemori, J. I. Sznajder, and A. M. Bertorello, ''Salt-Inducible Kinase 1 Is Present in Lung Alveolar Epithelial Cells and Regulates Active Sodium Transport'', Biochem Biophys Res Commun, 409 (2011), 28-33.
17S.S. Taylor F.W. Herberg, W.R. Dostmann., ''Active Site Mutations Define the Pathway for the Cooperative Activation of Camp-Dependent Protein Kinase'', Biochemistry (Mosc) (1996).
18C. Finsterwald, A. Carrard, and J. L. Martin, ''Role of Salt-Inducible Kinase 1 in the Activation of Mef2-Dependent Transcription by Bdnf'', PLoS One, 8 (2013), e54545.
19M. Foretz, N. Ancellin, F. Andreelli, Y. Saintillan, P. Grondin, A. Kahn, B. Thorens, S. Vaulont, and B. Viollet, ''Short-Term Overexpression of a Constitutively Active Form of Amp-Activated Protein Kinase in the Liver Leads to Mild Hypoglycemia and Fatty Liver'', Diabetes, 54 (2005), 1331-9.
20T. Tsuboi and M. Fukuda, ''Rab3a and Rab27a Cooperatively Regulate the Docking Step of Dense-Core Vesicle Exocytosis in Pc12 Cells'', Journal of Cell Science 119 (2006).
21G. Gao, J. Widmer, D. Stapleton, T. Teh, T. Cox, B. E. Kemp, and L. A. Witters, ''Catalytic Subunits of the Porcine and Rat 5''-Amp-Activated Protein Kinase Are Members of the Snf1 Protein Kinase Family'', Biochim Biophys Acta, 1266 (1995), 73-82.
22J. L. Hall, G. D. Lopaschuk, A. Barr, J. Bringas, R. D. Pizzurro, and W. C. Stanley, ''Increased Cardiac Fatty Acid Uptake with Dobutamine Infusion in Swine Is Accompanied by a Decrease in Malonyl Coa Levels'', Cardiovasc Res, 32 (1996), 879-85.
23D. G. Hardie, S. A. Hawley, and J. W. Scott, ''Amp-Activated Protein Kinase--Development of the Energy Sensor Concept'', J Physiol, 574 (2006), 7-15.
24E. Henriksson, H. A. Jones, K. Patel, M. Peggie, N. Morrice, K. Sakamoto, and O. Goransson, ''The Ampk-Related Kinase Sik2 Is Regulated by Camp Via Phosphorylation at Ser358 in Adipocytes'', Biochem J, 444 (2012), 503-14.
25N. Horike, A. Kumagai, Y. Shimono, T. Onishi, Y. Itoh, T. Sasaki, K. Kitagawa, O. Hatano, H. Takagi, T. Susumu, H. Teraoka, K. Kusano, Y. Nagaoka, H. Kawahara, and H. Takemori, ''Downregulation of Sik2 Expression Promotes the Melanogenic Program in Mice'', Pigment Cell Melanoma Res, 23 (2010), 809-19.
26N. Horike, H. Sakoda, A. Kushiyama, H. Ono, M. Fujishiro, H. Kamata, K. Nishiyama, Y. Uchijima, Y. Kurihara, H. Kurihara, and T. Asano, ''Amp-Activated Protein Kinase Activation Increases Phosphorylation of Glycogen Synthase Kinase 3beta and Thereby Reduces Camp-Responsive Element Transcriptional Activity and Phosphoenolpyruvate Carboxykinase C Gene Expression in the Liver'', J Biol Chem, 283 (2008), 33902-10.
27N. Horike, H. Takemori, Y. Katoh, J. Doi, L. Min, T. Asano, X. J. Sun, H. Yamamoto, S. Kasayama, M. Muraoka, Y. Nonaka, and M. Okamoto, ''Adipose-Specific Expression, Phosphorylation of Ser794 in Insulin Receptor Substrate-1, and Activation in Diabetic Animals of Salt-Inducible Kinase-2'', J Biol Chem, 278 (2003), 18440-7.
28B. S. Huang, R. A. White, and F. H. Leenen, ''Possible Role of Brain Salt-Inducible Kinase 1 in Responses to Central Sodium in Dahl Rats'', Am J Physiol Regul Integr Comp Physiol, 303 (2012), R236-45.
29R. Fiedler J. Kowal, ''Adrenal Cells in Tissue Culture. '', Arch.Biochem. Biophys., 128 (1968), 406–21.
30R. Wijntjes J. Weering, H. de Wit, J. Wortel, L. Niels Cornelisse,W. J.H. Veldkamp, M. Verhage., ''Automated Analysis of Secretory Vesicle Distribution at the Ultrastructural Level'', Journal of Neuroscience Methods, 173 (2008), 83–90.
31J.Arnold, ''Ein Beitrag Zur Feineren Struktur Und Dem Chemismus Der Nebennieren'', Virchows Arch. Pathol. Anat. Physiol. Klin. Med., 35 (1866), 64–107.
32M. L. Kaljusto, K. O. Stenslokken, T. Mori, A. Panchenko, M. L. Frantzen, G. Valen, and J. Vaage, ''Preconditioning Effects of Steroids and Hyperoxia on Cardiac Ischemia-Reperfusion Injury and Vascular Reactivity'', Eur J Cardiothorac Surg, 33 (2008), 355-63.
33Y. Katoh, H. Takemori, N. Horike, J. Doi, M. Muraoka, L. Min, and M. Okamoto, ''Salt-Inducible Kinase (Sik) Isoforms: Their Involvement in Steroidogenesis and Adipogenesis'', Mol Cell Endocrinol, 217 (2004), 109-12.
34K. Kitagawa, T. Sasaki, Y. Terasaki, Y. Yagita, and H. Mochizuki, ''[Creb Activation Is a Key Player for Ischemic Tolerance in the Brain]'', Rinsho Shinkeigaku, 52 (2012), 904-7.
35H. J. Koh, M. F. Hirshman, H. He, Y. Li, Y. Manabe, J. A. Balschi, and L. J. Goodyear, ''Adrenaline Is a Critical Mediator of Acute Exercise-Induced Amp-Activated Protein Kinase Activation in Adipocytes'', Biochem J, 403 (2007), 473-81.
36G. Kuser-Abali, F. Ozcan, A. Ugurlu, A. Uysal, S. H. Fuss, and K. Bugra-Bilge, ''Sik2 Is Involved in the Negative Modulation of Insulin-Dependent Muller Cell Survival and Implicated in Hyperglycemia-Induced Cell Death'', Invest Ophthalmol Vis Sci, 54 (2013), 3526-37.
37R. S. Lee-Young, M. J. Palmer, K. C. Linden, K. LePlastrier, B. J. Canny, M. Hargreaves, G. D. Wadley, B. E. Kemp, and G. K. McConell, ''Carbohydrate Ingestion Does Not Alter Skeletal Muscle Ampk Signaling During Exercise in Humans'', Am J Physiol Endocrinol Metab, 291 (2006), E566-73.
38X. Lin, H. Takemori, Y. Katoh, J. Doi, N. Horike, A. Makino, Y. Nonaka, and M. Okamoto, ''Salt-Inducible Kinase Is Involved in the Acth/Camp-Dependent Protein Kinase Signaling in Y1 Mouse Adrenocortical Tumor Cells'', Mol Endocrinol, 15 (2001), 1264-76.
39M. Muraoka, A. Fukushima, S. Viengchareun, M. Lombes, F. Kishi, A. Miyauchi, M. Kanematsu, J. Doi, J. Kajimura, R. Nakai, T. Uebi, M. Okamoto, and H. Takemori, ''Involvement of Sik2/Torc2 Signaling Cascade in the Regulation of Insulin-Induced Pgc-1alpha and Ucp-1 Gene Expression in Brown Adipocytes'', Am J Physiol Endocrinol Metab, 296 (2009), E1430-9.
40A. J. Murray, ''Pharmacological Pka Inhibition: All May Not Be What It Seems'', Sci Signal, 1 (2008), re4.
41N. Musi, and L. J. Goodyear, ''Targeting the Amp-Activated Protein Kinase for the Treatment of Type 2 Diabetes'', Curr Drug Targets Immune Endocr Metabol Disord, 2 (2002), 119-27.
42M. J. O''Hare, and A. M. Neville, ''Morphological Responses to Corticotrophin and Cyclic Amp by Adult Rat Adrenocortical Cells in Monolayer Culture'', J Endocrinol, 56 (1973), 529-36.
43M. Okamoto, H. Takemori, and Y. Katoh, ''Salt-Inducible Kinase in Steroidogenesis and Adipogenesis'', Trends Endocrinol Metab, 15 (2004), 21-6.
44R. U. Onyenwoke, L. J. Forsberg, L. Liu, T. Williams, O. Alzate, and J. E. Brenman, ''Ampk Directly Inhibits Ndpk through a Phosphoserine Switch to Maintain Cellular Homeostasis'', Mol Biol Cell, 23 (2012), 381-9.
45K.L. Parker, Chaplin, D.D., Wong, M., Seidman, J.G., Smith, J.A., Schimmer, B.P., ''Expression of Murine 21-Hydroxylase in Mouse Adrenal Glands and in Transfected Y1 Adrenocortical Tumor Cells.'', Proc. Natl. Acad. Sci. U.S.A., 82 (1985), 7860–64.
46S. Popov, K. Venetsanou, P. J. Chedrese, V. Pinto, H. Takemori, A. Franco-Cereceda, P. Eriksson, N. Mochizuki, P. Soares-da-Silva, and A. M. Bertorello, ''Increases in Intracellular Sodium Activate Transcription and Gene Expression Via the Salt-Inducible Kinase 1 Network in an Atrial Myocyte Cell Line'', Am J Physiol Heart Circ Physiol, 303 (2012), H57-65.
47D. W. Provance, T. L. James, and J. A. Mercer, ''Melanophilin, the Product of the Leaden Locus, Is Required for Targeting of Myosin-Va to Melanosomes'', Traffic, 3 (2002), 124-32.
48William E. Rainey, Karla Saner, and Bernard P. Schimmer, ''Adrenocortical Cell Lines'', Molecular and Cellular Endocrinology, 228 (2004), 23-38.
49J. S. Ramalho, R. Anders, G. B. Jaissle, M. W. Seeliger, C. Huxley, and M. C. Seabra, ''Rapid Degradation of Dominant-Negative Rab27 Proteins in Vivo Precludes Their Use in Transgenic Mouse Models'', BMC Cell Biol, 3 (2002), 26.
50L. Ricardo, C. Dieguez, A. Vidal-Puig, and Lopez, ''Ampk: A Metabolic Gauge Regulating Whole-Body Energy Homeostasis'', Trends in Molecular Medicine, 14 (2008), 539-49.
51JR. ROBERT W. PIERSON, ''Metabolism of Steroid Hormones in Adrenal Cortex Tumor Cultures'', Endocrinology, 81: (1967), 693-707.
52C. Roepstorff, B. Vistisen, M. Donsmark, J. N. Nielsen, H. Galbo, K. A. Green, D. G. Hardie, J. F. Wojtaszewski, E. A. Richter, and B. Kiens, ''Regulation of Hormone-Sensitive Lipase Activity and Ser563 and Ser565 Phosphorylation in Human Skeletal Muscle During Exercise'', J Physiol, 560 (2004), 551-62.
53A. Romito, E. Lonardo, G. Roma, G. Minchiotti, A. Ballabio, and G. Cobellis, ''Lack of Sik1 in Mouse Embryonic Stem Cells Impairs Cardiomyogenesis by Down-Regulating the Cyclin-Dependent Kinase Inhibitor P57kip2'', PLoS One, 5 (2010), e9029.
54D. S. Rowlands, J. S. Thomson, B. W. Timmons, F. Raymond, A. Fuerholz, R. Mansourian, M. C. Zwahlen, S. Metairon, E. Glover, T. Stellingwerff, M. Kussmann, and M. A. Tarnopolsky, ''Transcriptome and Translational Signaling Following Endurance Exercise in Trained Skeletal Muscle: Impact of Dietary Protein'', Physiol Genomics, 43 (2011), 1004-20.
55N. B. Ruderman, H. Park, V. K. Kaushik, D. Dean, S. Constant, M. Prentki, and A. K. Saha, ''Ampk as a Metabolic Switch in Rat Muscle, Liver and Adipose Tissue after Exercise'', Acta Physiol Scand, 178 (2003), 435-42.
56T. Sasaki, H. Takemori, Y. Yagita, Y. Terasaki, T. Uebi, N. Horike, H. Takagi, T. Susumu, H. Teraoka, K. Kusano, O. Hatano, N. Oyama, Y. Sugiyama, S. Sakoda, and K. Kitagawa, ''Sik2 Is a Key Regulator for Neuronal Survival after Ischemia Via Torc1-Creb'', Neuron, 69 (2011), 106-19.
57B. P. Schimmer, ''Isolation of Acth-Resistant Y1 Adrenal Tumor Cells'', Methods Enzymol, 109 (1985), 350-6.
58R. A. Screaton, M. D. Conkright, Y. Katoh, J. L. Best, G. Canettieri, S. Jeffries, E. Guzman, S. Niessen, J. R. Yates, 3rd, H. Takemori, M. Okamoto, and M. Montminy, ''The Creb Coactivator Torc2 Functions as a Calcium- and Camp-Sensitive Coincidence Detector'', Cell, 119 (2004), 61-74.
59M. H. Simonian, P. J. Hornsby, C. R. Ill, M. J. O''Hare, and G. N. Gill, ''Characterization of Cultured Bovine Adrenocortical Cells and Derived Clonal Lines: Regulation of Steroidogenesis and Culture Life Span'', Endocrinology, 105 (1979), 99-108.
60M. Sjostrom, K. Stenstrom, K. Eneling, J. Zwiller, A. I. Katz, H. Takemori, and A. M. Bertorello, ''Sik1 Is Part of a Cell Sodium-Sensing Network That Regulates Active Sodium Transport through a Calcium-Dependent Process'', Proc Natl Acad Sci U S A, 104 (2007), 16922-7.
61A. J. Smith, B. R. Thompson, M. A. Sanders, and D. A. Bernlohr, ''Interaction of the Adipocyte Fatty Acid-Binding Protein with the Hormone-Sensitive Lipase: Regulation by Fatty Acids and Phosphorylation'', J Biol Chem, 282 (2007), 32424-32.
62F. Spiga, Y. Liu, G. Aguilera, and S. L. Lightman, ''Temporal Effect of Adrenocorticotrophic Hormone on Adrenal Glucocorticoid Steroidogenesis: Involvement of the Transducer of Regulated Cyclic Amp-Response Element-Binding Protein Activity'', J Neuroendocrinol, 23 (2011), 136-42.
63A. Sriwijitkamol, J. L. Ivy, C. Christ-Roberts, R. A. DeFronzo, L. J. Mandarino, and N. Musi, ''Lkb1-Ampk Signaling in Muscle from Obese Insulin-Resistant Zucker Rats and Effects of Training'', Am J Physiol Endocrinol Metab, 290 (2006), E925-32.
64D. Stapleton, K. I. Mitchelhill, G. Gao, J. Widmer, B. J. Michell, T. Teh, C. M. House, C. S. Fernandez, T. Cox, L. A. Witters, and B. E. Kemp, ''Mammalian Amp-Activated Protein Kinase Subfamily'', J Biol Chem, 271 (1996), 611-4.
65K. Stenstrom, H. Takemori, G. Bianchi, A. I. Katz, and A. M. Bertorello, ''Blocking the Salt-Inducible Kinase 1 Network Prevents the Increases in Cell Sodium Transport Caused by a Hypertension-Linked Mutation in Human Alpha-Adducin'', J Hypertens, 27 (2009), 2452-7.
66M. Szyf, Milstone, D.S., Schimmer, B.P., Parker, K.L., Seidman, J.G., '' Cis Modification of the Steroid 21-Hydroxylase Gene Prevents Its Expression in the Y1 Mouse Adrenocortical Tumor Cell Line.'', Mol. Endocrinol., 4 (1990), 1144–52.
67H. Takemori, Y. Katoh Hashimoto, J. Nakae, E. N. Olson, and M. Okamoto, ''Inactivation of Hdac5 by Sik1 in Aicar-Treated C2c12 Myoblasts'', Endocr J, 56 (2009), 121-30.
68H. Takemori, Y. Katoh, N. Horike, J. Doi, and M. Okamoto, ''Acth-Induced Nucleocytoplasmic Translocation of Salt-Inducible Kinase. Implication in the Protein Kinase a-Activated Gene Transcription in Mouse Adrenocortical Tumor Cells'', J Biol Chem, 277 (2002), 42334-43.
69M. Taub, J. E. Springate, and F. Cutuli, ''Targeting of Renal Proximal Tubule Na,K-Atpase by Salt-Inducible Kinase'', Biochem Biophys Res Commun, 393 (2010), 339-44.
70T. Tolmachova, R. Anders, J. Stinchcombe, G. Bossi, G. M. Griffiths, C. Huxley, and M. C. Seabra, ''A General Role for Rab27a in Secretory Cells'', Mol Biol Cell, 15 (2004), 332-44.
71T. Tsuboi, and G. A. Rutter, ''Insulin Secretion by ''Kiss-and-Run'' Exocytosis in Clonal Pancreatic Islet Beta-Cells'', Biochem Soc Trans, 31 (2003), 833-6.
72———, ''Multiple Forms of "Kiss-and-Run" Exocytosis Revealed by Evanescent Wave Microscopy'', Curr Biol, 13 (2003), 563-7.
73T. Tsuboi, C. Zhao, S. Terakawa, and G. A. Rutter, ''Simultaneous Evanescent Wave Imaging of Insulin Vesicle Membrane and Cargo During a Single Exocytotic Event'', Curr Biol, 10 (2000), 1307-10.
74T. Uebi, Y. Itoh, O. Hatano, A. Kumagai, M. Sanosaka, T. Sasaki, S. Sasagawa, J. Doi, K. Tatsumi, K. Mitamura, E. Morii, K. Aozasa, T. Kawamura, M. Okumura, J. Nakae, H. Takikawa, T. Fukusato, M. Koura, M. Nish, A. Hamsten, A. Silveira, A. M. Bertorello, K. Kitagawa, Y. Nagaoka, H. Kawahara, T. Tomonaga, T. Naka, S. Ikegawa, N. Tsumaki, J. Matsuda, and H. Takemori, ''Involvement of Sik3 in Glucose and Lipid Homeostasis in Mice'', PLoS One, 7 (2012), e37803.
75A. Varadi, E. K. Ainscow, V. J. Allan, and G. A. Rutter, ''Involvement of Conventional Kinesin in Glucose-Stimulated Secretory Granule Movements and Exocytosis in Clonal Pancreatic Beta-Cells'', J Cell Sci, 115 (2002), 4177-89.
76A. J. Verhoeven, A. Woods, C. H. Brennan, S. A. Hawley, D. G. Hardie, J. Scott, R. K. Beri, and D. Carling, ''The Amp-Activated Protein Kinase Gene Is Highly Expressed in Rat Skeletal Muscle. Alternative Splicing and Tissue Distribution of the Mrna'', Eur J Biochem, 228 (1995), 236-43.
77G.P. Vinson, Whitehouse, B., Hinson, J., ''The Adrenal Cortex'', (1992).
78Z. Wang, H. Takemori, S. K. Halder, Y. Nonaka, and M. Okamoto, ''Cloning of a Novel Kinase (Sik) of the Snf1/Ampk Family from High Salt Diet-Treated Rat Adrenal'', FEBS Lett, 453 (1999), 135-9.
79C. Wasmeier, P. V. Burgos, T. Trudeau, H. W. Davidson, and J. C. Hutton, ''An Extended Tyrosine-Targeting Motif for Endocytosis and Recycling of the Dense-Core Vesicle Membrane Protein Phogrin'', Traffic, 6 (2005), 474-87.
80M. R. Waterman, N. Kagawa, U. M. Zanger, K. Momoi, J. Lund, and E. R. Simpson, ''Comparison of Camp-Responsive DNA Sequences and Their Binding Proteins Associated with Expression of the Bovine Cyp17 and Cyp11a and Human Cyp21b Genes'', J Steroid Biochem Mol Biol, 43 (1992), 931-5.
81W. W. Winder, H. A. Wilson, D. G. Hardie, B. B. Rasmussen, C. A. Hutber, G. B. Call, R. D. Clayton, L. M. Conley, S. Yoon, and B. Zhou, ''Phosphorylation of Rat Muscle Acetyl-Coa Carboxylase by Amp-Activated Protein Kinase and Protein Kinase A'', J Appl Physiol, 82 (1997), 219-25.
82L. A. Witters, and B. E. Kemp, ''Insulin Activation of Acetyl-Coa Carboxylase Accompanied by Inhibition of the 5''-Amp-Activated Protein Kinase'', J Biol Chem, 267 (1992), 2864-7.
83T. Yanase, T. Imai, E. R. Simpson, and M. R. Waterman, ''Molecular Basis of 17alpha-Hydroxylase/17,20-Lyase Deficiency'', J Steroid Biochem Mol Biol, 43 (1992), 973-9.
84F. C. Yang, B. C. Tan, W. H. Chen, Y. H. Lin, J. Y. Huang, H. Y. Chang, H. Y. Sun, P. H. Hsu, G. G. Liou, J. Shen, C. J. Chang, C. C. Han, M. D. Tsai, and S. C. Lee, ''Reversible Acetylation Regulates Salt-Inducible Kinase (Sik2) and Its Function in Autophagy'', J Biol Chem, 288 (2013), 6227-37.
85Y. Yasumura, V. Buonassisi, and G. Sato, ''Clonal Analysis of Differentiated Function in Animal Cell Cultures. I. Possible Correlated Maintenance of Differentiated Function and the Diploid Karyotype'', Cancer Res, 26 (1966), 529-35.
86W. Yin, J. Mu, and M. J. Birnbaum, ''Role of Amp-Activated Protein Kinase in Cyclic Amp-Dependent Lipolysis in 3t3-L1 Adipocytes'', J Biol Chem, 278 (2003), 43074-80.
87Y. S. Yoon, W. Y. Seo, M. W. Lee, S. T. Kim, and S. H. Koo, ''Salt-Inducible Kinase Regulates Hepatic Lipogenesis by Controlling Srebp-1c Phosphorylation'', J Biol Chem, 284 (2009), 10446-52.
88T. R. Zahn, J. K. Angleson, M. A. MacMorris, E. Domke, J. F. Hutton, C. Schwartz, and J. C. Hutton, ''Dense Core Vesicle Dynamics in Caenorhabditis Elegans Neurons and the Role of Kinesin Unc-104'', Traffic, 5 (2004), 544-59.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔