(3.236.118.225) 您好!臺灣時間:2021/05/17 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱庭緯
研究生(外文):Ting-Wei Chu
論文名稱:矯正迷你骨釘用鋼材之表面處理-機械分析
論文名稱(外文):Surface treatment of 316L stainless steel in the application of orthodontic miniscrews-Mechanical analysis
指導教授:林俊彬林俊彬引用關係
指導教授(外文):Chin-Pin Lin
口試委員:李志偉廖運炫張瑞青
口試日期:2013-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:316L不鏽鋼矯正骨釘表面改質磁控濺鍍電子束蒸鍍溶膠凝膠法二氧化鈦
外文關鍵詞:316L stainless steel orthodontic miniscrewssurface modificationmagnetron sputteringelectron beam evaporationSol-gel methodtitaniumtitanium dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來隨著矯正領域中骨性錨定的盛行,各種針對矯正用迷你骨釘的幾何形 狀、材質或表面形貌的改質,皆曾被指出能改變迷你骨釘的臨床使用成功率。本 實驗選用俱有高機械強度的迷你骨釘不鏽鋼鋼材,希望藉由表面鍍一層具生物相 容性薄膜的改質技術,以提高其生物相容性與骨整合能力,進而提升臨床使用成 功率。
本實驗為求對各項機械性質測試能在較單純的情況下進行精確分析,因此是 選用與醫用不鏽鋼迷你骨釘相同材質的 316L 不鏽鋼板來進行表面鍍膜作業,希望 找出具最佳機械性質表現的鍍膜參數。本實驗的變數含以下四項:1.鍍膜材料,選 用鈦與二氧化鈦兩種。2.鍍膜方式,二氧化鈦薄膜以磁控濺鍍或溶膠凝膠法方式製 成,鈦薄膜以磁控濺鍍或電子束蒸鍍方式製作。3.鍍膜厚度,選擇比較的厚度範圍 為 30~500nm。4.表面粗糙度。
薄膜製成後,以場發射電子微探分析儀與X光繞射分析儀分析薄膜表面組成 與晶相,以場發射與掃瞄式電子顯微鏡觀察薄膜表面與截面,以彩色三維雷射掃 瞄儀分析薄膜表面粗糙度,並藉由刮痕測試機評估各種鍍膜參數下的薄膜附著性。
實驗結果顯示鈦薄膜可藉由以磁控濺鍍或電子束蒸鍍方式製作,但鈦薄膜於 316L 基板上的附著性極差,幾乎無法承受任何正向力與側向力。反之,二氧化鈦 薄膜無論以磁控濺鍍或溶膠凝膠法方式製成,其附著性都較鈦薄膜佳。另外,膜 厚與表面粗糙度確實會影響薄膜附著性,二氧化鈦薄膜附著性隨厚度增加而增 加,而基板表面粗糙度若增加,薄膜抗破裂(crack)能力會下降,但抗剝落(detachment) 能力會增加。

In recent years, with the increased application of the orthodontic bony anchorage, it had been proposed to improve the clinical success rate of orthodontic mini-screws by a variety of modification of screw geometry, material or surface morphology. Our intention in this study was to modify the surface of stainless steel by surface coating of biocompatible films and improve the biocompatibility and the capability of bone integration.
The 316L stainless steel plates with the same composition of orthodontic stainless steel screws were used in this study to eliminate variables and simplify the mechanical testing conditions. The experimental variables were included as follow: 1. Coating materials. Titanium and titanium dioxide. 2. Coating methods. Magnetron sputtering or sol-gel method for titanium dioxide film. And magnetron sputtering or electron beam evaporation method for titanium film. 3 Coating thickness. With the range of 30 to 500 nm. 4. Surface roughness.
The composition and crystalline phase were analyzed by electron probe microanalyzer (EPMA) and X-ray diffraction analyzer (XRD). The surface and cross-section of films were examined by field emission scanning electron microscope. And the color three-dimensional laser scanning analyzer was used to calculate the surface roughness of films. Finally, the film adhesion under various coating parameters was evaluated by a scratch test machine.
The study results show that the titanium film could be made by the magnetron sputtering or the electron beam evaporation method. However, poor adhesion between the titanium coating and the substrate was noted by the scratch test. On the other hands, regardless of the coating methods by magnetron sputtering or sol-gel method, the
v
titanium dioxide film performed good adhesion properties. In addition, the film thickness and surface roughness does affect the property of film adhesion. The ability of spalling resistance was improved by increased coating thickness and by increased surface roughness. But the crack resistance property was weaken with increase of the surface roughness of films.

口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xii
Chapter 1 緒論 1
Chapter 2 文獻回顧 4
2.1 鍍膜材料(Coating Material) 5
2.1.1 羥基磷灰石(Hydroxyapatite, HA) 5
2.1.2 鈮(Niobium), 鉭(Tantalum) 6
2.1.3 鈦(Titanium, Ti) 6
2.1.4 二氧化鈦 (Titanium Dioxide, TiO2) 6
2.1.5 結論 7
2.2 鍍膜方法 8
2.2.1 磁控濺鍍(Magnetron Sputtering) 8
2.2.2 電子束蒸鍍法(E-Beam Evaporator Method) 9
2.2.3 溶膠凝膠法(Sol-Gel Method) 10
2.2.4 結論 11
2.3 薄膜厚度之設定 12
2.4 基材的表面粗糙度(Surface Roughness of Substrate) 13
Chapter 3 材料與方法 16
3.1 研究材料 16
3.1.1 American Iron Steel Institute (AISI) 316L不鏽鋼板 16
3.1.2 鍍源 16
3.2 實驗儀器與設定 17
3.2.1 精密線切割機(Precision Wire Cutting Machine) 17
3.2.2 自動研磨機 17
3.2.3 彩色三維雷射掃描儀(Color 3D Laser Scanner) 17
3.2.4 超音波震洗機(Ultrasonic Cleaner) 17
3.2.5 磁控濺鍍機 18
3.2.6 電子束蒸鍍機(Electron Beam Evaporator) 18
3.2.7 溶膠凝膠鍍膜製程設備 19
3.2.8 X光繞射分析儀 (X-ray Diffraction, XRD) 19
3.2.9 場發射電子微探分析儀 (Electron Probe Microanalyzer, EPMA) 20
3.2.10 掃描式電子顯微鏡與能量散射光譜儀 (Scanning Electron Microscopy and Energy Dispersive Spectrometer, EDS) 20
3.2.11 表面白金蒸鍍儀器 21
3.2.12 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) 21
3.2.13 刮痕測試機(Scratch tester) 21
3.3 統計方法 22
Chapter 4 結果 23
4.1 以磁控濺鍍法製作之鈦薄膜與二氧化鈦薄膜分析 23
4.1.1 成分分析 23
4.1.2 結晶相分析 24
4.1.3 微結構分析 25
4.1.4 機械性質分析-刮痕測試(Scratch Test) 30
4.2 以磁控濺鍍法製作之鈦薄膜與以電子束蒸鍍法製作之鈦薄膜比較 35
4.3 以磁控濺鍍法製作之二氧化鈦薄膜與以溶膠凝膠法製作之二氧化鈦薄膜比較 35
4.4 表面粗糙度鑑定 36
4.5 基材表面粗糙度對薄膜附著性之影響 38
Chapter 5 討論 40
Chapter 6 結論 44
6.1 薄膜成分、晶相、微結構分析 44
6.2 機械性質分析-刮痕試驗分析薄膜附著性 45
6.3 未來方向與建議 46
REFERENCE 77



1Creekmore, T. D. & Eklund, M. K. The possibility of skeletal anchorage. Journal of clinical orthodontics : JCO 17, 266-269 (1983).
2Kanomi, R. Mini-implant for orthodontic anchorage. Journal of clinical orthodontics : JCO 31, 763-767 (1997).
3Costa, A., Raffainl, M. & Melsen, B. Miniscrews as orthodontic anchorage: a preliminary report. The International journal of adult orthodontics and orthognathic surgery 13, 201-209 (1998).
4Gray, J. B. & Smith, R. Transitional implants for orthodontic anchorage. Journal of clinical orthodontics : JCO 34, 659-666 (2000).
5Tarnow, D. P., Emtiaz, S. & Classi, A. Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1- to 5-year data. The International journal of oral & maxillofacial implants 12, 319-324 (1997).
6Lum, L. B., Beirne, O. R. & Curtis, D. A. Histologic evaluation of hydroxylapatite-coated versus uncoated titanium blade implants in delayed and immediately loaded applications. The International journal of oral & maxillofacial implants 6, 456-462 (1991).
7Roberts, W. E., Helm, F. R., Marshall, K. J. & Gongloff, R. K. Rigid endosseous implants for orthodontic and orthopedic anchorage. The Angle orthodontist 59, 247-256, doi:10.1043/0003-3219(1989)059<0247:REIFOA>2.0.CO;2 (1989).
8Deguchi, T. et al. The use of small titanium screws for orthodontic anchorage. Journal of dental research 82, 377-381 (2003).
9Huja, S. S., Litsky, A. S., Beck, F. M., Johnson, K. A. & Larsen, P. E. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 127, 307-313, doi:10.1016/j.ajodo.2003.12.023 (2005).
10Liou, E. J., Pai, B. C. & Lin, J. C. Do miniscrews remain stationary under orthodontic forces? American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 126, 42-47, doi:10.1016/S0889540604002057 (2004).
11Duyck, J. et al. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clinical oral implants research 12, 207-218 (2001).
12Favero, L., Brollo, P. & Bressan, E. Orthodontic anchorage with specific fixtures: related study analysis. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 122, 84-94 (2002).
13Melsen, B. & Bosch, C. Different approaches to anchorage: a survey and an evaluation. The Angle orthodontist 67, 23-30, doi:10.1043/0003-3219(1997)067<0023:DATAAS>2.3.CO;2 (1997).
14Carano, A., Lonardo, P., Velo, S. & Incorvati, C. Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Progress in orthodontics 6, 82-97 (2005).
15Miyawaki, S. et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 124, 373-378, doi:10.1016/S0889540603005651 (2003).
16Disegi, J. A. & Eschbach, L. Stainless steel in bone surgery. Injury 31 Suppl 4, 2-6 (2000).
17Antunes, R. A. & de Oliveira, M. C. Corrosion processes of physical vapor deposition-coated metallic implants. Critical reviews in biomedical engineering 37, 425-460 (2009).
18Wu, T. Y., Kuang, S. H. & Wu, C. H. Factors associated with the stability of mini-implants for orthodontic anchorage: a study of 414 samples in Taiwan. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 67, 1595-1599, doi:10.1016/j.joms.2009.04.015 (2009).
19Chen, Y. J. et al. Stability of miniplates and miniscrews used for orthodontic anchorage: experience with 492 temporary anchorage devices. Clinical oral implants research 19, 1188-1196, doi:10.1111/j.1600-0501.2008.01571.x (2008).
20Gracco, A. et al. Numerical/experimental analysis of the stress field around miniscrews for orthodontic anchorage. European journal of orthodontics 31, 12-20, doi:10.1093/ejo/cjn066 (2009).
21Morais, S. et al. Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products. Journal of biomedical materials research 42, 199-212 (1998).
22Jouyce Y. Wong, J. D. B. biomaterials: principles and pracices. Vol. chap. 2 (CRC. Press, 2012).
23LeGeros, R. Z. Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research, 81-98 (2002).
24Caulier, H. et al. The effect of Ca-P plasma-sprayed coatings on the initial bone healing of oral implants: an experimental study in the goat. Journal of biomedical materials research 34, 121-128 (1997).
25Fathi, M. H., Salehi, M., Saatchi, A., Mortazavi, V. & Moosavi, S. B. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dental materials : official publication of the Academy of Dental Materials 19, 188-198 (2003).
26Wennerberg, A., Jimbo, R., Allard, S., Skarnemark, G. & Andersson, M. In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces. The International journal of oral & maxillofacial implants 26, 1161-1166 (2011).
27Kim, H., Choi, S. H., Chung, S. M., Li, L. H. & Lee, I. S. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation. Biomedical materials 5, 044106, doi:10.1088/1748-6041/5/4/044106 (2010).
28Mohammad Hossein Fathi, V. M. Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants. Dent Res J 4, 74-82 (2007).
29Christensen, F. B., Dalstra, M., Sejling, F., Overgaard, S. & Bunger, C. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 9, 97-103 (2000).
30Guo Biao, X. H., He Hong. Histological Study on Stainless-steel and Titanium Mini-screw as Orthodontics Anchorage. 2nd Meeting of IADR Pan Asian Pacific Federation (PAPF) and the 1st Meeting of IADR Asia/Pacific Region ( 2009).
31Khelfaoui, Y., Kerkar, M., Bali, A. & Dalard, F. Electrochemical characterisation of a PVD film of titanium on AISI 316L stainless steel. Surface and Coatings Technology 200, 4523-4529, doi:10.1016/j.surfcoat.2005.03.043 (2006).
32J Heinrichs, T. J., U Wiklund, H Engqvist. Physical vapour deposition and bioactivity of crystalline titanium dioxide thin films. Society for Biomaterials and Artificial Organs (India) (20080314-15).
33Gluzek J, M. J., Furman P, Nitsch K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18, 789-794 (1997).
34Shen GX, C. Y., Lin CJ. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films 489, 130-136 (2005).
35G.X. Shen, R. G. D., Y.C. Chen, C.J. Lin,, and D. Scantlebury. Study on Hydrophobic Nano-Titanium Dioxide Coatings for Improvement in Corrosion Resistance of Type 316L Stainless Steel Corrosion 61 (2005).
36Shen, G. X., Chen, Y. C., Lin, L., Lin, C. J. & Scantlebury, D. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochimica Acta 50, 5083-5089, doi:10.1016/j.electacta.2005.04.048 (2005).
37T., S. & M., K. Topographic fidelity of Ti-O film deposited onto Ti-6Al-4V alloy substrate to its surface by reactive DC sputtering. Vol. 32 (Elsevier, 1997).
38Ohring, M. The materials science of thin films. (academil press limited, 1992).
39Wagner, W. C. A brief introduction to advanced surface modification technologies. The Journal of oral implantology 18, 231-235 (1992).
40Khelfaoui, Y. Electrochemical characterisation of a PVD film of titanium on AISI 316L stainless steel. Surface and Coatings Technology 200, 4523-4529 (2006).
41Han, C. M., Kim, H. E., Kim, Y. S. & Han, S. K. Enhanced biocompatibility of Co-Cr implant material by Ti coating and micro-arc oxidation. Journal of biomedical materials research. Part B, Applied biomaterials 90, 165-170, doi:10.1002/jbm.b.31270 (2009).
42Pan, J., Leygraf, C., Thierry, D. & Ektessabi, A. M. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. Journal of biomedical materials research 35, 309-318 (1997).
43Gluszek, J., Masalski, J., Furman, P. & Nitsch, K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18, 789-794 (1997).
44Nagarajan, S. R., N. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications. Applied Surface Science 255, 3927-3932.
45Behrisch, R. Sputtering by particle bombardment. (Spring, 1981).
46Dholam R, P. N., Adami M. Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Int J Hydrogen Energy 33, 6896e6903 (2008).
47Brohede, U. et al. A novel graded bioactive high adhesion implant coating. Applied Surface Science 255, 7723-7728, doi:10.1016/j.apsusc.2009.04.149 (2009).
48Harsha. (Elsevier, Great Brutain, 2006).
49J, B. C. Sol-gel science: the physics and chemistry of sol-gel process. (academic press, 1990).
50Elfanaoui, A. et al. Optical and structural properties of TiO2 thin films prepared by sol–gel spin coating. International Journal of Hydrogen Energy 36, 4130-4133, doi:10.1016/j.ijhydene.2010.07.057 (2011).
51Chen, Y. & Dionysiou, D. D. Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Applied Catalysis B: Environmental 69, 24-33, doi:10.1016/j.apcatb.2006.05.002 (2006).
52Bouabid K, I. A., Amira Y, Sdaq A, Assabane A, Ait-Ichou Y. Optical study of TiO2 thin films prepared by solegel. Ferroelectrics 372, 69e75 (2008).
53Ritter, E. Properties of optical film materials. Applied optics 20, 21-25, doi:10.1364/AO.20.000021 (1981).
54Klemberg-Sapieha, J. E. et al. Mechanical characteristics of optical coatings prepared by various techniques: a comparative study. Applied optics 43, 2670-2679 (2004).
55Larsson, C. et al. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 17, 605-616 (1996).
56Esposito, M., Lausmaa, J., Hirsch, J. M. & Thomsen, P. Surface analysis of failed oral titanium implants. Journal of biomedical materials research 48, 559-568 (1999).
57Seshan, K. Handbook of Thin Film Deposition (Materials and Processing Technology). (Noyes bablication, 2002).
58Shalabi, M. M., Gortemaker, A., Van''t Hof, M. A., Jansen, J. A. & Creugers, N. H. Implant surface roughness and bone healing: a systematic review. Journal of dental research 85, 496-500 (2006).
59Buser, D. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of biomedical materials research 25, 889-902, doi:10.1002/jbm.820250708 (1991).
60London, R. M., Roberts, F. A., Baker, D. A., Rohrer, M. D. & O''Neal, R. B. Histologic comparison of a thermal dual-etched implant surface to machined, TPS, and HA surfaces: bone contact in vivo in rabbits. The International journal of oral & maxillofacial implants 17, 369-376 (2002).
61Carlsson, L., Rostlund, T., Albrektsson, B. & Albrektsson, T. Removal torques for polished and rough titanium implants. The International journal of oral & maxillofacial implants 3, 21-24 (1988).
62Vercaigne, S., Wolke, J. G., Naert, I. & Jansen, J. A. Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants. Clinical oral implants research 9, 261-271 (1998).
63Wennerberg A, A. T. Suggested guidelines for the topographic evaluation of implant surfaces. The International journal of oral & maxillofacial implants 15, 331-344 (2000).
64Wennerberg A, A. T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 20, 172-184 (2009).
65P.A., S. Adhesion testing by the scratch test method: the influence of intrinsic and extrinsic parameters on the critical load. Thin Solid Films 154, 333-349 (1987).
66P.J., B. The relationship between hardness and scratch adhesion. Thin Solid Films 154, 403-416 (1987).
67Liu, S. & Yang, Z. Evaluation of the Effect of Acute and Subacute Exposure to TiO2 Nanoparticles on Oxidative Stress. Methods in molecular biology 1028, 135-145, doi:10.1007/978-1-62703-475-3_8 (2013).
68Onuma, K. et al. Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells. The American journal of pathology 175, 2171-2183, doi:10.2353/ajpath.2009.080900 (2009).
69Frisken, K. W., Dandie, G. W., Lugowski, S. & Jordan, G. A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Australian dental journal 47, 214-217 (2002).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1.王澤鑑,意思表示之詐欺與侵權行為-最高法院歷年判例、判決及民庭庭推總會決議之檢討,法學叢刊,第23卷第四期,民國67年12月
2. 2.江朝國,保險法第六十四條據實說明告知義務之探討-以第六十四條第三項二年除斥期間之適用為中心,法令月刊,第51卷第10期,2000年
3. 3.江朝國,論我國危險增加之規定及相關問題之探討,保險專刊,第38輯,1994年
4. 4.江朝國,論保險法上違反告知義務之解除權與民法上因詐欺所生之撤銷權之關係-兼評最高法院86年度第九次民事庭會議決議,壽險季刊第114期
5. 6.李添福,剖析保險詐欺成因及防制對策,壽險季刊,第125期,2002年9月
6. 7.李欽賢,論保險法上告知義務違反與民法上錯誤詐欺之關係,月旦法學雜誌第41期,1998年11月
7. 11.林榮耀,情事變更原則之理論與實務,法律評論,第6期
8. 12.林勳發,保險法制之沿革與修正芻議(下),月旦法學雜誌第66期,2000年11月
9. 13.姚志明,誠信原則,收錄於月旦法學雜誌第76期,2001年9月
10. 15.侯慶辰,民法情事變更原則之研究,法學叢刊第191期,2003年7月
11. 16.郭榮沛,失效模式與效應分析及應用案例研討,收錄於機械工業第142期,1995年
12. 17.陳聰富,誠信原則之理論與實踐,收錄於政大法學評論第104期
13. 18.陳豐年,特約條款之認定-最高法院九十六年台上字第三九四號判決評析,東海大學法學研究第三十二期,2010年6月
14. 19.黃茂榮,情事變更:契約基礎之欠缺或喪失,植根雜誌第17卷第9期
15. 20.黃立,工程承攬契約中情事變更原則之適用問題,政大法學評論第119期,100年2月