跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾莉婷
研究生(外文):Li-Ting Tseng
論文名稱:人工植體頸部型態的差異對周圍骨質應變之影響
論文名稱(外文):The Effect of Different Implant Neck Designs upon Strain at Surrounding Bone
指導教授:林立德林立德引用關係
指導教授(外文):Li-Deh Lin
口試委員:王若松許明倫
口試日期:2013-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:89
中文關鍵詞:植體電組應變計應變植體頸部設計
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗目的:在人工植牙的臨床應用上,牙醫師經常會面對不理想的骨質和骨量,造成治療上的困難,而植體的生物機械特性,就成為改善人工植牙預後的重要因素。學者進一步提出“功能性表面積”的想法來解釋在骨頭–植體交界面的應力傳導,然而,目前的研究對這個區域的細節還沒有全盤了解。本實驗的研究目的即希望能進一步釐清這個區域的範圍,並了解它是如何對應力分散造成影響。
材料與方法:本實驗中採用兩種不同設計的植體:Brånemark(Mk III,瑞典)植體的尺寸分別為直徑3.75或5.0 mm,長度8.5或10.0 mm。Astra Tech(OsseoSpeed,瑞典)植體的尺寸分別為直徑4.0S、5.0S或5.0 mm,長度9.0或11.0 mm。每種尺寸的植體有兩個樣本, 每支植體被包埋在聚甲基丙烯酸甲酯樹脂塊( 85×20×30 mm)中,藉以模擬上顎無牙區的低密度骨質。每支植體表面上黏有四個微型應變計(KFG-02-120-C1,Kyowa,日本),測量點分別在植體平台以下1.0、2.0、4.0及5.0 mm的位置。在模擬支台齒的鈦金屬塊(8 × 8 × 8 mm)上施以30度,50牛頓的定力,每個模型6次,並記錄四個測量點的應變值。
實驗結果:所有植體平均應變值(MSV)的最大值皆出現在植體平台以下1.0 mm處,且較其他3個測量點達到顯著差異(P < 0.05)。Brånemark組的MSV最大值出現在3.75*8.5 mm的植體上,Astra Tech 組的MSV最大MSV值則出現在4.0S*9.0 mm的植體上。當植體的直徑增加,或長度增加時,MSV有減少的現象,在兩組不同設計的植體上, 直徑和長度的影響力並不相同。此外,植體的設計,包括微螺紋或外展等,都會對測量到的MSV造成影響。
結論:在本實驗的條件限制下,無論植體的直徑、長度或設計,最大的應力集中都發生在植體平台以下2.0 mm的範圍。因此可以推論, 有一個主要支持區在這個範圍,並且承擔了大部分植體受力時傳導下來的應變。而植體在這個區域內若有良好的設計,將會對應力分散給予更多的好處。
Objectives: During the clinical practice of implant treatment, dentists are usually bothered by facing unfavorable bone quantity and quality. The implant biomechanic characteristics become important to improve the prognosis of implant placement. Therefore, the idea of “functional surface area” was brought up to explain more about stress transfering at bone-implant interface. Unfortunately, we did not really understand the details of this area. The aim of the present study was to identify this area and how it influences the stress distribution.
Methods: Two different designs of dental implants were included in this study. The sizes of Brånemark (Mk III, Sweden) implants were 3.75 or 5.0 mm in diameter and 8.5
or 10.0 mm in length. The sizes of Astra Tech (OsseoSpeed, Sweden) implants were 4.0S, 5.0S or 5.0 mm in diameter and 9.0 or 11.0 mm in length. There were two implants of each size. Each implant was embedded in a polymethyl methacrylate resin block (85 X 20 X 30 mm), simulating a maxillary edentulous region with low-density bone. Four miniature strain gauges (KFG-02-120-C1, Kyowa, Japan) was attached to each implant where the measuring points were at 1.0, 2.0, 4.0 and 5.0 mm below the platform on the external surface of the implant. A 30-degree oblique static load of 50N was applied 6 times on a Ti block (8 X 8 X 8 mm) screwed on the implant of each model and bone strains at the four measuring points were recorded.
Results: All implants showed the largest mean strain value (MSV) at 1.0-mm site below the platform which was statistically higher (P < 0.05) than the other 3 measuring
sites. For Brånemark implants, the largest MSV was observed in 3.75*8.5 mm implant. For Astra Tech implants, the largest MSV was observed in 4.0S*9.0 mm implant. MSV
dereased when the implant length increased and when the implant diameter increased. However, difference existed between two implant designs in the effect of implant length
and implant diameter on MSV. The outspreaded or microthreaded design also affected the MSV.
Conclusion: Within the limitation of this in-vitro study, we concluded that MSV concentrated mostly at 2.0 mm below platform of implants in different diameters, lengths or designs. Therefore, there was a primary supporting area in peri-implant bone where received most strain from implants during loading. Well design in this area would give more benefits in stress distribution.
Verification letter from the Oral Examination Committee……………………….... I
Acknowledgement…………………………………………………………………. II
摘要………………………………………………………………………………… III
Abstract……………………………………………………………………………... V
Table of Contents…………………………………………………………………… VII
List of Figures………………………………………………………………………. IX
List of Tables………………………………………………………………………... XI
Chapter 1 Introduction………………………………………………………………. 1
Chapter 2 Literature Review………………………………………………………… 2
2.1 Success Rate…………………………………………………………. 2
2.2 Mechanostat Theory…………………………………………………. 4
2.3 Relationship Between Nature of Force and Bone Cell………………. 5
2.4 Stress Dispersion of Implant Under Force…………………………… 5
2.5 Functional Surface Area……………………………………………… 7
2.6 Primary Support Area………………………………………………… 8
2.7 Implant Type and Design…………………………………………….. 9
2.8 Methods to Measure Stress Variation Around Dental Implant………. 15
Chapter 3 Motivation and Purpose…………………………………………………… 19
Chapter 4 Materials and Methods…………………………………………………….. 20
Experiment 1: Different positions of the same implant………………….. 20
Experiment 2: The effect of implant diameters and lengths……………… 26
Experiment 3: The effect of implant designs…………………………..... 27
Chapter 5 Results…………………………………………………………………….. 29
Chapter 6 Discussion…………………………………………………………………. 34
Chapter 7 Conclusion………………………………………………………………… 44
Reference…………………………………………………………………………….. 45
Figures……………………………………………………………………………….. 53
Tables………………………………………………………………………………… 80
1. Abduo J, Swain M (2012). Influence of vertical misfit of
titanium and zirconia frameworks on peri-implant strain. Int J Oral Maxillofac Implants 27:529-536.
2. Abrahamsson I, Berglundh T (2006). Tissue characteristics at microthreaded implants: an experimental study in dogs. Clin Implant Dent Relat Res 8:107-113.
3. Abuhussein H, Pagni G, Rebaudi A, Wang HL (2010). The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 21:129-136.
4. Adell R, Lekholm U, Rockler B, Brånemark PI (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10:387-416.
5. Adell R, Eriksson B, Lekholm U, Brånemark PI, Jemt T (1990). Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5:347-359.
6. Akca K, Cehreli MC, Iplikcioglu H (2002). A comparison of threedimensional finite element stress analysis with in vitro strain gauge measurements on dental implants. Int J Prosthodont 15:115-121.
7. Akca K, Cehreli MC (2008). A photoelastic and strain gauge analysis of interface force transmission of internal-cone implants. Int J Periodontics Restorative Dent 28:391-399.
8. Albrektsson T, Brånemark PI, Hansson HA, Lindström J (1981). Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155-170.
9. Artzi Z, Carmeli G, Kozlovsky A (2006). A distinguishable
observation between survival and success rate outcome of
hydroxyapatite‐coated implants in 5–10 years in function. Clin Oral Implants Res 17:85-93.
10. Barbier L, Schepers E (1997). Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int J Oral Maxillofac Implants 12:215-223.
11. Bidez MW, Misch CE (1992). Issues in bone mechanics related to oral implants. Implant Dent 1:289-294.
12. Binon PP (2000). Implants and components. Int J Oral Maxillofac Implants 15:76-94.
13. Bozkaya D, Muftu S, Muftu A (2004). Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 92:523-530.
14. Brighton CT, Schaffer JL, Shapiro DB, Tang JJ, Clark CC (1991). Proliferation and macromolecular synthesis by rat calvarial bone cells grown in various oxygen tensions. J Orthop Res 9:847-854.
15. Bumgardner JD, Boring JG, Cooper RC Jr, Gao C, Givaruangsawat S, Gilbert JA, Misch CM, Steflik DE (2000). Preliminary evaluation of a new dental implant design in canine models. Implant Dent 9:252-260.
16. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, Belser UC, Lang NP (1997). Long‐term evaluation of nonsubmerged ITI implants. Part 1: 8‐year life table analysis of a prospective multi ‐ center study with 2359 implants. Clin Oral Implants Res 8:161-172.
17. Carlsson LV, Alberktsson T, Berman C (1989). Bone response to plasma-cleaned titanium implants. Int J Oral Maxillofac Implants 4:199.
18. Cehreli M, Duyck J, De Cooman M, Puers R, Naert I (2004). Implant design and interface force transfer. A photoelastic and strain-gauge analysis. Clin Oral Implants Res 15:249-257.
19. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH (2002). Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 29:565-574.
20. Chung S, Heo SJ, Koak JY, Kim SK, Lee JB, Han JS, Han CH, Rhyu IC, Lee SJ (2008). Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study. J Oral Rehabil 35:229-236.
21. Cooper LF (2000). A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 84:522-534.
22. Cowin SC (1989). Bone mechanics handbook. 2nd ed. Boca Raton: CRC Press.
23. Cowin SC, Mehrabadi MM (1989). Identification of the elastic symmetry of bone and other materials. J Biomech 22:503-515.
24. Cowin SC, Moss-Salentijn L, Moss ML (1991). Candidates for the mechanosensory system in bone. J Biomech Eng 113:191-197.
25. Duyck J, Rønold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE (2001). The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 12:207-218.
26. El-Homsi F, Lockowandt P, Linden LA (2004). Simulating
periodontal effects in dental osseointegrated implants: effect of an intramobile damping element on the fatigue strength of dental implants--an in vitro test method. Quintessence Int 35:449-455.
27. Frost H (1987). The mechanostat: a proposed pathogenetic
mechanism of osteoporosis and bone mass effects of mechanical and nonmechanical agents. Bone Miner 2:73-85.
28. Genco R, Glurich I, Haraszthy V, Zambon J, DeNardin E (2001). Overview of risk factors for periodontal disease and
implications for diabetes and cardiovascular disease. Compend Contin Educ Dent 22:21-23.
29. Geng J, Ma QS, Xu W, Tan KB, Liu GR (2004). Finite element analysis of four thread ‐ form configurations in a stepped screw implant. J Oral Rehabil 31:233-239.
30. Gotfredsen K (2012). A 10-year prospective study of single tooth implants placed in the anterior maxilla. Clin Implant Dent Relat Res 14:80-87.
31. Himmlova L, Dostálová T, Kácovský A, Konvicková S (2004). Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 91:20-25.
32. Hoshaw SJ, Brunski JB, Cochran GV (1994). Mechanical loading of Branemark implants affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants 9:345-360.
33. Iplikcioglu H, Akca K, Cehreli MC, Sahin S (2003). Comparison of non-linear finite element stress analysis with in vitro strain gauge measurements on a Morse taper implant. Int J Oral Maxillofac Implants 18:258-265.
34. Isidor F (2006). Influence of forces on peri‐implant bone. Clin Oral Implants Res 17:8-18.
35. ISO 14801 (2007). Dentistry — Implants — Dynamic fatigue test for endosseous dental implants.
36. Karoussis IK, Brägger U, Salvi GE, Bürgin W, Lang NP (2004). Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI Dental Implant System. Clin Oral Implants Res 15:8-17.
37. Kawara M, Komiyama O, Kimoto S, Kobayashi N, Kobayashi K, Nemoto K (1998). Distortion behavior of heat-activated acrylic denturebase resin in conventional and long, low-temperature processing methods. J Dent Res 77:1446-1453.
38. Kim E (2005). Dental Implant Prosthetics. J Prosthodont 14:212-214.
39. Kohyama K, Hatakeyama E, Sasaki T, Dan H, Azuma T, Karita K (2004). Effects of sample hardness on human chewing force: a model study using silicone rubber. Arch Oral Biol 49:805-816.
40. Kong L, Liu BL, Hu KJ, Li DH, Song YL, Ma P, Yang J (2006). Optimized thread pitch design and stress analysis of the cylinder screwed dental implant. Hua Xi Kou Qiang Yi Xue Za Zhi 24:509-512, 515.
41. Lee DW, Choi YS, Park KH, Kim CS, Moon IS (2007). Effect of microthread on the maintenance of marginal bone level: a 3‐year prospective study. Clin Oral Implants Res 18:465-470.
42. Ma P, Liu HC, Li DH, Lin S, Shi Z, Peng QJ (2007). Influence of helix angle and density on primary stability of immediately loaded dental implants: three-dimensional finite element analysis. Zhonghua Kou Qiang Yi Xue Za Zhi 42:618-621.
43. Misch CE (1990). Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol 6:23-31.
44. Misch CE, Bidez M (1994). Implant-protected occlusion: a
biomechanical rationale. Compendium 15:1330-1344.
45. Misch CE (2004). Dental implant prosthetics. St Louis: Mosby.
46. Misch CE (2008). Contemporary implant dentistry. 3rd ed. St Louis: Mosby.
47. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N (2005). Biomechanical effect of abutment on stability of orthodontic mini ‐ implant. Clin Oral Implants Res 16:480-485.
48. Nicolella DP, Lankford J, Jepsen KJ, Davy DT (1997). Correlation of physical damage development with microstructure and strain localization in bone. ASME 35:311-312.
49. Nissan J, Ghelfan O, Gross M, Chaushu G (2010). Analysis of load transfer and stress distribution by splinted and unsplinted implant-supported fixed cemented restorations. J Oral Rehabil 37:658-662.
50. Palmer RM, Palmer PJ, Smith BJ (2000). A 5-year prospective study of Astra single tooth implants. Clin Oral Implants Res 11:179-182.
51. Peyron MA, Mishellany A, Woda A (2004). Particle size
distribution of food boluses after mastication of six natural foods. J Dent Res 83:578-582.
52. Pierrisnard L, Renouard F, Renault P, Barquins M (2003).
Influence of implant length and bicortical anchorage on implant stress distribution. Clin Implant Dent Relat Res 5:254-262.
53. Pilliar R, Deporter DA, Watson PA, Valiquette N (1991). Dental implant design–effect on bone remodeling. J Biomed Mater Res 25:467-483.
54. Rieger MR, Fareed K, Adams WK, Tanquist RA (1989). Bone stress distribution for three endosseous implants. J Prosthet Dent 61:223-228.
55. Rieger M, Mayberry M, Brose M (1990). Finite element analysis of six endosseous implants. J Prosthet Dent 63:671-676.
56. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS (1984). Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 86:95-111.
57. Rubin CT, Hausman M (1988). The cellular basis of Wolff''s law. Transduction of physical stimuli to skeletal adaptation. Rheum Dis Clin North Am 14:503-517.
58. Sachs F (1988). Mechanical transduction in biological systems. Crit Rev Biomed En 16:141-169.
59. Sachs F (1991). Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem 104:57-60.
60. Schrotenboer J, Tsao YP, Kinariwala V, Wang HL (2008). Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol 79:2166-2172.
61. Shimada A, Tanaka M, Yamashita R, Noguchi K, Torisu T, Yamabe Y, Fujii H, Murata H (2008). Automatic regulation of occlusal force because of hardness-change of the bite object. J Oral Rehabil 35:12-19.
62. Shimada A, Yamabe Y, Torisu T, Baad-Hansen L, Murata H, Svensson P (2012). Measurement of dynamic bite force during mastication. J Oral Rehabil 39:349-356.
63. Siegele, D, Soltesz U (1989). Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 4:333-340.
64. Steigenga J, Al-Shammari K, Misch C, Nociti FH Jr, Wang HL (2004). Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol 75:1233-1241.
65. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H (2003). Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 18:357-368.
66. Tonetti MS, Schmid J (1994). Pathogenesis of implant failures. Periodontol 2000 4:127-138.
67. Tonetti MS (1998). Risk factors for osseodisintegration.
Periodontol 2000 17:55-62.
68. Vaillancourt H, Pilliar R, McCammond D (1995). Finite element analysis of crestal bone loss around porous ‐ coated dental implants. J Appl Biomater 6:267-282.
69. Van der Bilt A, Pocztaruk RL, Frasca LC, van der Glas HW, Abbink JH (2011). The influence of auditory and visual information on the neuromuscular control of chewing crispy food. Eur J Oral Sci 119:427-434.
70. Weibrich G, Buch RS, Wegener J, Wagner W (2001). Five-year prospective follow-up report of the Astra tech standard dental implant in clinical treatment. Int J Oral Maxillofac Implants 16:557-562.
71. Yang TC, Maeda Y, Gonda T (2011). Biomechanical rationale for short implants in splinted restorations: an in vitro study. Int J Prosthodont 24:130-132.
72. Zarb GA, Alberktsson T (1990). Criteria for determining clinical success with osseointegrated dental implants. Cah prothese 71:19-26.
73. Zarb GA, Schmitt A (1990a). The longitudinal clinical
effectiveness of osseointegrated dental implants: the Toronto study. Part I: Surgical results. J Prosthet Dent 63:451-457.
74. Zarb GA, Schmitt A (1990b). The longitudinal clinical
effectiveness of osseointegrated dental implants: the Toronto Study. Part II: The prosthetic results. J Prosthet Dent 64:53-61.
75. Zarb GA, Schmitt A (1990c). The longitudinal clinical
effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. J Prosthet Dent 64:185-194.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李聖傑,〈從性自主權思考刑法的性行為〉,《中原財經法學》,第10期,頁1-39,2003年6月。
2. 李聖傑,〈妨害性自主:第一講—保護法益〉,《月旦法學教室》,第19期,頁97-104,2004年5月。
3. 李聖傑,〈妨害性自主:第二講—性行為與性的行為〉,《月旦法學教室》,第21期,頁90-97,2004年7月。
4. 吳忻穎,〈與兒童性交猥褻罪作為抽象危險犯之問題研究〉,《法學新論》,第40期,頁121-149,2013年2月。
5. 許玉秀,〈刑法的任務—與效能論的小對話〉,《刑事法雜誌》,47卷2期,頁1-14,2003年4月。
6. 許玉秀,〈重新學習性自主——勇敢面對問題〉,《月旦法學雜誌》,第200期,頁302-323,2012年1月。
7. 蔡聖偉,〈論「對幼童性交罪」與「強制性交罪」的關係—評最高法院九十九年第七次刑事庭決議〉,《月旦裁判時報》,第8期,頁65-69,2011年4月。
8. 盧映潔,〈兩小無猜是原罪?——刑法第二二七條之與幼年人性交猥褻罪及相關條文的修正研議〉,《月旦法學雜誌》,第152期,頁218-224,2008年1月。
9. 盧映潔,〈「意不意願」很重要嗎?—評高雄地方法院九十九年訴字第四二二號判決暨最高法院九十九年第七次刑庭決議〉,《月旦法學雜誌》,第186期,頁164-173,2010年11月。
10. 謝煜偉,〈論虛擬兒童色情的刑事立法趨勢--誰的青春肉體不可褻瀆?〉,《月旦法學雜誌》,第186期,頁38-59,2010年11月。