|
[1] Brining animation to life through cloud computing. In http://softwareinsight.intel.com/visual/visual-feature.php. [2] Matlab k-means function help page. In http://www.mathworks.com/help/stats/kmeans.html. [3] Support vector machine wiki page. In https://en.wikipedia.org/wiki/Support_vector_machine. [4] Workstaion hardwares in ntu csie. In http://wslab.csie.ntu.edu.tw/hardware/. [5] Adamic, L. Zipf, power-laws and pareto - a ranking tutorial. [6] Basak, D., Pal, S., and Patranabis, D. C. Support vector regression. In Neural Information Processing (October 2007). [7] Chang, C.-C., and Lin, C.-J. LIBSVM: A library for support vector machines. In ACM Transactions on Intelligent Systems and Technology (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. [8] Chen, Y., Ganapathi, A., Griffith, R., and Katz, R. The case for evaluating mapre- duce performance using workload suites. In Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE (July 2011). [9] Chen, Y., Ganapathi, A. S., Griffith, R., and Katz, R. H. Analysis and lessons from a publicly available google cluster trace. In UC Berkeley Technical Report (June 2010). [10] Dinda, P. Online prediction of the running time of tasks. In Cluster Computing (2001). [11] Dinda, P. A., and O’Hallaron, D. R. Host load prediction using linear models. In Cluster Computing (2000). [12] Drucker,H.,Burges,C.J.C.,Kaufman,L.,Smola,A.,andVapnik,V.Supportvector regression machines. In Neural Information Processing Systems (1997). [13] Ferguson, A. D., Bodik, P., Kandula, S., Boutin, E., and Fonseca, R. Jockey: Guar- anteed job latency in data parallel clusters. In Proceedings of the 7th ACM european conference on Computer Systems (EuroSys) (2012). [14] Iverson, M. A., Ozguner, F., and Potter, L. C. Statistical prediction of task execution times through analytic benchmarking for scheduling in a heterogeneous environ- ment. In IEEE Heterogeneous Computing Workshop (1999). [15] Kapadia, N. H., Fortes, J. A. B., and Brodley, C. E. Predictive application- performance modeling in a computational grid environment. In High Performance Distributed Computing (ISHPDC), IEEE (August 1999). [16] Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. An analysis of traces from a production mapreduce cluster december. In Cluster, Cloud and Grid Computing (CCGrid), IEEE (May 2010). [17] Lama, P., and Zhou, X. Aroma: Automated resource allocation and configuration of mapreduce environment in the cloud. In Proceedings of the 9th international conference on Autonomic computing (ICAC) (2012). [18] Leung, A. W., Pasupathy, S., Goodson, G., and Miller, E. L. Measurement and analysis of large-scale network file system workloads. In USENIX Annual Technical Conference on Annual Technical Conference (ATC) (2008). [19] Mishra, A. K., Hellerstein, J. L., Cirne, W., and Das, C. R. Towards characterizing cloud backend workloads: Insight from google compute clusters. In ACM SIGMET- RICS Performance Evaluation Review (March 2010). 54 [20] Newman, M. Power laws, pareto distributions and zipf’s law. In Contemporary Physics (2005). [21] Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Kozuch, M. A. Heterogene- ity and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third ACM Symposium on Cloud Computing Article No. 7 (2012). [22] Smith,W.Predictionservicesfordistributedcomputing.InParallelandDistributed Processing Symposium (IPDPS), IEEE (March 2007). [23] Smith, W., Foster, I., and Taylor, V. Predicting application run times using historical information. In Lecture Notes on Computer Science (1998). [24] Smola, A. J., and Scholkopf, B. A tutorial on support vector regression. In Statistics and Computing (August 2004). [25] Vaarandi, R. Simple logfile clustering tool. In http://ristov.users.sourceforge.net/slct/. [26] Vaarandi, R. A data clustering algorithm for mining patterns from event logs. In IEEE workshop on IP Operations and Management (2003). [27] Verma, A., Cherkasova, L., and Campbell, R. H. Aria: Automatic resource inference and allocation for mapreduce. In Proceedings of the 9th international conference on Autonomic computing (ICAC) (2011).
|