跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹春馨
研究生(外文):Chun-Hsin Chan
論文名稱:以禁忌搜尋法求解多品項需求不確定之開放式存貨途程問題
論文名稱(外文):A Tabu search algorithm for the multi-item open inventory routing problems with demand uncertainty.
指導教授:喻奉天喻奉天引用關係
指導教授(外文):Vincent F. Yu
口試委員:喻奉天
口試委員(外文):Vincent F. Yu
口試日期:2012-12-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:51
中文關鍵詞:存貨途程問題禁忌搜尋法開放式車輛途程問題
外文關鍵詞:Inventory Routing ProblemTabu SearchOpen Vehicle Routing Problem.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
開放式車輛途程問題(Open Vehicle Routing Problem; OVRP)為車輛途程問題(Vehicle Routing Problem; VRP)的衍伸應用,VRP為一封閉路程,車輛完成服務後須回到場站,而OVRP為一開放式迴路,車輛服務後無需回到場站,OVRP實務上的應用如校車接送,火車服務及第三方物流運輸等等。本研究考量OVRP在第三方物流運輸上的應用,加入存貨成本因素,結合存貨途程問題(Inventory Routing Problem; IRP),定義開放式存貨途程問題(Open Inventory Routing Problem; OIRP),並建構OIRP數學模型。本研究站在物流業角度,考量如何產生有效路徑,使其在需求不確定下能以最小成本遞送。本研究以禁忌搜尋法(Tabu Search; TS)為基礎,模擬多品項之需求不確定問題,最佳化其配送路徑,使其運輸成本及存貨相關成本最小化。
Open Vehicle Routing Problem (OVRP) is an extensions of the Vehicle Routing Problem (VRP). The original VRP problem concern with a closed loop problem in which all the routes are started and ended in the same depot. On the other hand, OVRP is an open loop problem in which each vehicle starts from a depot but ends at a final served customer. The applications of OVRP include school bus, train service and third party logistics. In this research, we incorporate inventory effect into routing path and determine a new problem called Open Inventory Routing Problem (OIRP). This research presents a mathematical model and algorithm of the OIRP based on Tabu Search (TS) to solve a multi-item with demand uncertainty problem and minimize the total cost of the delivery route. The objective of OIRP is to minimize the sum of the total transportation costs and inventory costs.
CHINESE ABSTRACT I
ENGLISH ABSTRACT II
TABLE OF CONTENTS III
LIST OF FIGURES V
LIST OF TABLES VI
I. INTRODUCTION - 1 -
1.1. RESEARCH BACKGROUND AND MOTIVATION - 1 -
1.2. PURPOSE OF RESEARCH - 2 -
1.3. RESEARCH FRAMEWORK - 2 -
II. LITERATURE REVIEW - 4 -
2.1. VEHICLE ROUTING PROBLEM - 4 -
2.2. OPEN VEHICLE ROUTING PROBLEM - 5 -
2.3. INVENTORY ROUTING PROBLEM - 6 -
2.4. TABU SEARCH - 9 -
III. MODEL FORMULATION - 13 -
3.1. PROBLEM DEFINITION - 13 -
3.2. MATHEMATICAL MODEL - 15 -
IV. SOLUTION PROCEDURE - 19 -
4.1. INITIALIZATION - 19 -
4.2. NEIGHBORHOOD STRUCTURE - 20 -
4.3. TABU SEARCH ALGORITHM - 22 -
4.4. THOROUGH LOCAL SEARCH - 24 -
V. CONSTRUCTION OF TEST INSTANCES - 27 -
5.1. BENCHMARKING - 27 -
5.2. INSTANCES CONSTRUCTION - 28 -
5.3. COMPUTATIONAL RESULTS - 28 -
5.4. SENSITIVITY ANALYSIS - 42 -
VI. CONCLUSION AND FUTURE RESEARCH - 45 -
6.1. CONCLUSION - 45 -
6.2. FUTURE RESEARCH - 46 -
BIBLIOGRAPHIES - 47 -
Bibliographies
Ahmadi Javid, A., &; Azad, N. (2010). Incorporating location, routing and inventory decisions in supply chain network design. Transportation Research Part E: Logistics and Transportation Review, 46(5), 582-597.
Alfredo Tang Montane, F., &; Galvao, R. D. (2006). A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Computers &; Operations Research, 33(3), 595-619.
Andersson, H., Hoff, A., Christiansen, M., Hasle, G., &; Lokketangen, A. (2010). Industrial aspects and literature survey: Combined inventory management and routing. Computers &; Operations Research, 37(9), 1515-1536.
Archetti, C., Bertazzi, L., Hertz, A., &; Speranza, M. G. (2012). A hybrid heuristic for an inventory routing problem. INFORMS Journal on Computing, 24(1), 101-116.
Archetti, C., Bertazzi, L., Laporte, G., &; Speranza, M. G. (2007). A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transportation Science, 41(3), 382-391.
Baker, B. M., &; Ayechew, M. (2003). A genetic algorithm for the vehicle routing problem. Computers &; Operations Research, 30(5), 787-800.
Bell, J. E., &; McMullen, P. R. (2004). Ant colony optimization techniques for the vehicle routing problem. Advanced Engineering Informatics, 18(1), 41-48.
Bertazzi, L., Bosco, A., Guerriero, F., &; Lagana, D. (2011). A stochastic inventory routing problem with stock-out. Transportation Research Part C: Emerging Technologies.
Brandao, J. (2004). A tabu search algorithm for the open vehicle routing problem. European Journal of Operational Research, 157(3), 552-564.
Campbell, A. M., &; Savelsbergh, M. W. P. (2004). A decomposition approach for the inventory-routing problem. Transportation Science, 38(4), 488-502.
Chen, A., Yang, G., &; Wu, Z. (2006). Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University-Science A, 7(4), 607-614.
Coelho, L. C., Cordeau, J. F., &; Laporte, G. (2012). The inventory-routing problem with transshipment. Computers &; Operations Research.
Cordeau, J. F., Desaulniers, G., Desrosiers, J., Solomon, M. M., &; Soumis, F. (2002). VRP with time windows. The vehicle routing problem, 9, 157-193.
Cousineau-Ouimet, K. (2002). A tabu search heuristic for the inventory routing problem. Paper presented at the Proceedings of 37th Annual ORSNZ Conference.
Dantzig, G. B., &; Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
Dror, M., Ball, M., &; Golden, B. (1985). A computational comparison of algorithms for the inventory routing problem. Annals of Operations Research, 4(1), 1-23.
Gaur, V., &; Fisher, M. L. (2004). A periodic inventory routing problem at a supermarket chain. Operations research, 52(6), 813-822.
Gendreau, M., Hertz, A., &; Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management science, 40(10), 1276-1290.
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers &; Operations Research, 13(5), 533-549.
Hemmelmayr, V. C., Doerner, K. F., &; Hartl, R. F. (2009). A variable neighborhood search heuristic for periodic routing problems. European Journal of Operational Research, 195(3), 791-802.
Hertz, A., &; de Werra, D. (1990). The tabu search metaheuristic: how we used it. Annals of Mathematics and Artificial Intelligence, 1(1), 111-121.
Huang, S. H., &; Lin, P. C. (2010). A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty. Transportation Research Part E: Logistics and Transportation Review, 46(5), 598-611.
Kirkpatrick, S., &; Vecchi, M. (1983). Optimization by simmulated annealing. science, 220(4598), 671-680.
Kleywegt, A. J., Nori, V. S., &; Savelsbergh, M. W. P. (2002). The stochastic inventory routing problem with direct deliveries. Transportation Science, 36(1), 94-118.
Laporte, G., Nobert, Y., &; Desrochers, M. (1985). Optimal routing under capacity and distance restrictions. Operations research, 33(5), 1050-1073.
Moin, N. H., &; Salhi, S. (2006). Inventory routing problems: a logistical overview. Journal of the Operational Research Society, 58(9), 1185-1194.
Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research, 41(4), 421-451.
Rusdiansyah, A., &; Tsao, D. (2005). An integrated model of the periodic delivery problems for vending-machine supply chains. Journal of Food Engineering, 70(3), 421-434.
Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations research, 35(2), 254-265.
Solyalı, O., Cordeau, J. F., &; Laporte, G. (2012). Robust inventory routing under demand uncertainty. Transportation Science, 46(3), 327-340.
Taillard, E., Badeau, P., Gendreau, M., Guertin, F., &; Potvin, J. Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science, 31(2), 170-186.
Toth, P., &; Vigo, D. (1987). The vehicle routing problem (Vol. 9): Society for Industrial Mathematics.
Toth, P., &; Vigo, D. (2002). VRP with backhauls. The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, 9, 195-221.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊