跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張正翰
研究生(外文):Jeng-Han Jang
論文名稱:奈米線/金字塔結構矽基太陽能電池之研析
論文名稱(外文):The analysis for the nanowire/pyramid structure of silicon-based solar cells
指導教授:黃柏仁黃柏仁引用關係
指導教授(外文):Bohr-Ran Huang
口試委員:黃柏仁
口試委員(外文):Bohr-Ran Huang
口試日期:2013-06-28
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:112
中文關鍵詞:研磨處理矽奈米線金字塔太陽能電池
外文關鍵詞:Polishing treatmentsilicon nanowirepyramidsolar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文在探討奈米線/金字塔結構對矽基太陽能電池之影響。製程上以金字塔為主要結構,並蝕刻具有良好抗反射特性之奈米線結構,再利用溶膠凝膠法調配磷擴散溶液,以及使用網版印刷技術製做電極,其優點為製程簡單、成本低、減少環境危害。

本實驗在金字塔結構上又可以分為無研磨處理及三種研磨前處理,在無研磨處理情況下所蝕刻之金字塔形貌相當不均勻,最佳擴散後反射率為21.86%,效率為7.05%。而三種研磨方式分為鑽石粉研磨、砂紙研磨及拋光膏研磨,其目的在於蝕刻出均勻形貌金字塔結構,降低反射率以提高效率。三種研磨製程以拋光膏研磨有最好之效果,擴散後反射率為15.73%,效率為8.52%。

在奈米線/金字塔結構上,其最佳擴散後反射率為9.68%,最佳效率10.57%。而經過研磨處理所蝕刻之小尺寸金字塔,因為在擴散去氧化完後所對結構造成的破壞較大,因此其奈米線/金字塔結構效率較低。另外改變其硝酸銀濃度,觀察奈米線疏密度對其元件性能之影響,發現濃度0.5mM所蝕刻出接近孔洞狀之奈米線形貌有最佳之效率10.94%。而為了追求更高效率,因此再改變蝕刻時間,發現45秒所蝕刻之結構有最高效率11.52%。

金字塔蝕刻奈米結構與單純金字塔結構相比可以有效降低反射率,並提高效率。對無研磨金字塔結構而言在硝酸銀濃度0.5mM蝕刻45秒,其反射率可下降至14.10%,轉換效率可提高至11.52%。
This paper mainly discusses the effect of si nanowire / pyramid structures on solar cell performance. Pyramid structure is used in this manufacturing process, and the nanowire structure is synthesized by using the metal assisted electroless etching technique which performed the excellent anti-reflective properties. This work uses the sol-gel method to prepare the diffusion solution, and the screen printing technique for metal electrode. This process possesses the simple, low cost, reduced environmental hazards in solar cell fabrication.

In this study, the pyramid structure can be divided into no polishing treatment and three kinds of polishing pre-treatment. In the case of no polishing, the pyramid morphology is showed non-uniform, and performed the best reflectance of 21.86% after diffusion, and the efficiency of 7.05%.The three kinds of polishing way are diamond powder polishing, sandpaper polishing and polishing paste polishing. These pre-treatment processes possess the uniform morphology of pyramid structure and the lower reflectivity which effectively improve the efficiency. In these three kinds of polishing way, the polish paste polishing exhibits the best results, the reflectance is 15.73% after diffusion, and the efficiency is 8.52%.

In the nanowire / pyramid structure, the best reflectance is 9.68% after diffusion and the best efficiency is 10.57%. For the small size of nanowire / pyramid structure which is synthesized after polishing treatment, it is observed greater damage on the structure after diffusion process. These kinds of the small size for nanowire / pyramid structure possess the worse efficiency of solar cell. Moreover, the nanowire / pyramid structure with various silver nitrate concentrations are also study. It is found that the concentration of silver nitrate with 0.5mM possess the best efficiency of 10.94% with the certain density nanostructure in pyramid. Furthermore, the influence of the depth for nanostructure with various etching time on solar cell efficiency is further investigated. It is found that the 45 seconds of etching time perform the maximum efficiency of 11.52%.

The pyramid with nanostructures compared with pyramid structure can effectively reduce the reflectivity, and improve efficiency. In the no polishing treatment pyramid structure, for the concentration of silver nitrate with 0.5mM and the etching with 45 seconds, the reflectivity can be reduced 14.10% and the efficiency increased to 11.52% .
目 錄
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻探討 3
2.1 太陽能電池簡介 3
2.1.1 單晶矽太陽能電池 3
2.1.2 太陽能電池原理 6
2.1.3 太陽能光譜 8
2.1.4 太陽能電池參數 11
2.2 金字塔結構 14
2.2.1 金字塔結構介紹 14
2.2.2 金字塔結構蝕刻機制 15
2.2.3 金字塔結構製備方式 16
2.3 矽奈米線結構 17
2.3.1 矽奈米線成長介紹 17
2.3.2 矽奈米線結構蝕刻機制 17
第三章 實驗方法 19
3.1 實驗流程 19
3.2 晶圓清洗 20
3.3 研磨前處理 21
3.3.1 鑽石粉研磨前處理 21
3.3.2 砂紙研磨前處理 22
3.3.3 拋光膏研磨前處理 23
3.4 金字塔結構製備 24
3.5 矽奈米線結構製備 25
3.6 太陽能電池元件製作 26
3.6.1 P-N接面製作 26
3.6.2 電極製作 28
3.8 實驗分析儀器 30
3.8.1 場發射掃描式電子顯微鏡(FE-SEM) 30
3.8.2 紫外線-可見光分光光譜儀(UV-VIS) 30
3.8.3 太陽能電池電性量測系統(IV) 31
3.8.4 量子效率量測系統(IPCE) 31
3.8.5 原子力顯微鏡(AFM) 31
第四章 結果與討論 32
4.1 金字塔結構太陽能電池分析 32
4.1.1 金字塔結構(無研磨) 33
4.1.2 金字塔結構(鑽石粉研磨) 42
4.1.3 金字塔結構(砂紙研磨) 47
4.1.4 金字塔結構(拋光膏研磨) 52
4.2 奈米線/金字塔結構太陽能電池分析 58
4.2.1 奈米線/金字塔結構(無研磨) 58
4.2.2 奈米線/金字塔結構(鑽石粉研磨) 66
4.2.3 奈米線/金字塔結構(砂紙研磨) 73
4.2.4 奈米線/金字塔結構(拋光膏研磨) 78
4.3硝酸銀濃度對奈米線/金字塔結構太陽能電池之影響 84
4.4硝酸銀濃度(0.5mM)不同奈米線結構長度對太陽能電池之影響 91
4.4.1 奈米線/金字塔結構 91
4.4.2 奈米線結構 91
第五章 結論與未來展望 105
5.1 結論 105
5.2 未來展望 107
參考文獻 108
參考文獻
[1]BP Statistical Review of World Energy, 2011,.
[2]IEA World Energy Outlook, 2011.
[3]Sanjay K. Srivastava, Dinesh Kumar, P.K. Singh, M. Kar, Vikram Kumar, M.Husain, “Excellent antireflection properties of vertical silicon nanowire arrays, ”Solar Energy Materials and solar cell, vol.94, pp.1506-1511, 2010.
[4]顧鴻壽,太陽能電池元件導論:材料、元件、製程、系統,全威圖書有限公司,中華民國98年.
[5]Nikkei Electronics, April 2010.
[6]NREL, Best Research Cell Efficiencies 2013.
[7]Hong Xiao,半導體製程技術導論,台灣培生教育出版有限公司,中華民國96年.
[8]林明獻,太陽電池技術入門,全華圖書股份有限公司, 中華民國97年.
[9]http://www.greenrhinoenergy.com/solar/..
[10]C. Riordan and R. Hulstrom,“What is an air mass 1.5 spectrum ?,”Record of the IEEE Photovoltaic Specialists Conference, vol.2, pp.1085-1088, 1990.
[11]Natalya V. Yastrebova, “High-efficiency multi-junction solar cells: Current status and future potential” Centre for Research in Photonics, University of Ottawa, 2007.
[12]Dieter K. Schroder, “Semiconductor Material and Device Characterization, 2006.
[13]Jianhua Zhao, Aihua Wang, Pietro P. Altermatt, Stuart R. Wenham, Martin A.Green, “24% Efficient perl silicon solar cell:Recent improvements in high efficiency silicon cell research,” Solar Energy Materials and Solar Cells, vol.41-42,pp.87-99, 1996.
[14]F. Llopis and I. Tobı′as, “Influence of Texture Feature Size on the Optical Performance of Silicon Solar Cells,” Progress in photovoltaics: research and applications vol.13, pp.27-26, 2005.
[15]Mohammad Jellur Rahman, “Lecture Notes on Structure of Matter,“ Department of Physics BUET, Dhaka-1000.
[16]Kenneth E. Bean, “Anisotropic etching of silicon,” IEEE Trans. Electron Devices, ED-25, p.1185, 1978.
[17]H.Seidel, L.Cspregi, A.Heuberger, and H.Baumgsrtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, ”J.Electrochem, vol.137, pp.3612-3626, 1990.
[18]W.K. Choi., “Characterisation of pyramid formation arising from the TMAH etching of silicon,” Sensors and Actuator, vol. A 71, pp. 238-243, 1998.
[19]Yoshifumi Nakamine, Tetsuo Kodera, Ken Unchida, and Shunri Oda, “Removal of Surface Oxide Layer from Silico Nanocrystals by Hydrogen Fluoride Vapor Etching,” Japanese Journal of Applied Physics, vol.50, pp.115002-1-115002-4, 2011.
[20]錢佑欣,“緩衝液及二氧化矽對(100)單晶矽KOH濕蝕刻形成之微結構及反射性研究,”碩士論文,機械工程系所,大同大學,台北,2010.
[21]Soonwoo Kwon., “Effects of textured morphology on the short circuit current of single crystalline silicon solar cells: Evaluation of alkaline wet-texture processes,” Current Applied Physics, vol. 9 pp.1310–1314, 2009.
[22]Ou Weiying., “Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching,” Journal of Semiconductors, vol.32 pp.056002-1-056002-1-4, 2011.
[23]LV Hongjie ., “Study on Surface Texturization of Monocrystalline Silicon for Solar Cells,” Chinese Journal of Electron Devices s, vol.34 pp.498–502,2011.
[24]Zhou Chun-Lan, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, and Cao Xiao-Ning “Prearation and characterization of homogeneity and fine pyramids on the textured single silicon crystal,” ACTA PHYSICA SiNICA vol.59, pp.0577-5783, 2010.
[25]Jung M. Kim and Young K. Kim, “The enhancement of homogeneity in the textured structure of silicon crystal by using ultrasonic wave in the caustic etching process,” Solar Energy Materials & Solar Cells vol.81 pp.239-247, 2004.
[26]王宗新,“金字塔抗反射結構之製做及單晶矽太陽能電池之應用,” 碩士論文,光電工程研究所,國立中山大學,高雄,2007.
[27]Haofeng Li, Rui Jia, Chen Chen,Zhao Xing, Wuchang Meng, Ding, Yanlong, Deqi Wu, Xinyu Liu, and Tianchun Ye,“Influence of nanowires length on performance of crystalline silicon solar cell,”Applied Physics Letters, vol.98, 151116, 2011.
[28]Haofeng Li, Rui Jia, Chen Chen,Wuchang Ding, Yanlong Meng, Deqi Wu, Dawei Wu, Wei Chen, Xinyu Liu, Zhi jin, Wenwu Wang, and Tianchun Ye, “Antireflection properties and solar cell application of silicon nanostructures,” American Vacuum Society, vol.29, pp.031208-1~031208-5, 2011.
[29]Baris Ozdemir, Mustafa Kulakci, Rasit Turan and Husnu Emrah Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires,”Nanotechnology, vol.22, pp. 155606, 2011.
[30]Dinesh Kumar, Sanjay K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh,Nita Dilawar, M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” Jourmal of Nanoparticle Research, vol.12, pp. 2267-2276, 2010.
[31]Sanjay K. Srivastava, Dinesh Kumar, P.K. Singh, and Vikram Kumar, “Silicon nanowire arrays based "black silicon" solar cells,”Conference Record of the IEEE Photovoltaic Specialists Conference, pp001851 – 001856, 2009.
[32]Kuiqing Peng, Yunjie Yan, Shangpeng Gao, Jing Zhu, “Synthesis of Large Area Silicon Nanowire Array via Self-Assembling Naonelectrochemistry,” Advanced Materials, vol. 14, pp.1164-11167, 2002.
[33]Kuiqing Peng, Yunjie Yan Shangpeng Gao, Jing Zhu, “Dendrite Assited Growth of Silicon Nanowires in Electroless Metal Deposition,” Advanced Functional Materials, vol. 13, pp. 127-132, 2003.
[34]Kuiqing Peng and Jing Zhu, “Simultaneous gold deposition and formation of silicon nanowire arrays,”Journal of Electroanalytical Chemistry, vol. 558, pp. 35-39, 2003.
[35]Kuiqing Peng and Jing Zhu, “Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution,” Electrochimica Acta, vol. 49, pp. 2563-2568, 2004.
[36]Kuiqing Peng, Zhipeng Huang, and Jing Zhu, “Fabrication of large-area silicon nanowire p-n junction diode arrays,” Advanced Materials, vol. 16, pp. 73-76, 2004.
[37]Kuiqing Peng, Yin Wu, Hui Fang, Xiaoyan Zhong, Ying Xu, and Jing Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angewandte Chemie Internation Edition, vol. 44, pp. 2737-42, 2005.
[38]Kuiqing Peng, Ying Xu, Yin Wu, Yunjie Yan, Shuit-Tong Lee, and Jing Zhu, “Aligned Single-crystalline Si nanowire arrays for photovoltaic application,” Small, vol. 1, pp. 1062-7, 2005.
[39]Kuiqing Peng, Juejun Hu, Yunjie Yan, Yin Wu, Hui Fang, Ying Xu, ShuitTong Lee, and Jing Zhu “Fabriation of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Advanced Functional Materials, vol. 90, pp. 163123, 2007.
[40]Bohr-Ran Huang, Ying-Kan Yang, Tzu-Ching Lin, Wen-Luh Yang, “A simple and low-cost technique for silicon nanowire arrays based solar cells,” Solar Energy Materials and Solar cells, vol. 98, pp. 357-362, 2012.
[41]工業材料雜誌 181期 中華民國91年1月.
[42]Seok-Joo Byun, Seok Yong Byun, Jangkyo Lee, Jae Wan Kim, Taek Sung Lee, Kyuman Cho, Dongwoo Sheen, Sung Ju Tark, Donghwan Kim, Won Mok Kim “Analysis of light trapping effects in Si solar cells with a textured surface by ray tracing simulation,” Current Applied Physics, vol. 11, pp. S23-S25, 2011.
[43]Nestor Ximello, Amir Dastgeheib-Shirazi, Sascha Scholz, Giso Hahn, “,Influence of Pyramid Size of Chemically Textured Silicon Wafers on The Characterics of Industrial Solar cells,” 25th European PV Solar Energy Coference and Exhibition, pp.6-10, 2010.
[44]Katrin Birmann, Mathias Demant, S. Rein, “Optical Characterization of Random Pyramid Texturizaion,” 26th European PV Solar Energy Coference and Exhibition, pp, 5-9, 2011.
[45]Yuang-Tung Cheng, Jyh-Jier Ho, William Lee, Song-Yeu Tsai, Liang-Yi Chen, Jia-Jhe Liou, Shun-Hsyung Chang, Huajun Shen, and Kang L. Wang, “Efficiency Improved by H2 Forming Gas Treatment for Si-Based Solar Cell Applications,” International Journal of Photoenergy, pp,1-6, 2010.
[46]Young Do Kim, Sungeun Park, Jooyong Song, Sung Ju Tark, Min Gu Kang, Sonnwoo Kwon, Sewang Yoon, Donghwan Kim, “Surface passivation of crystalline silicon wafer via hydrogen plasma pre-treatment for solar cells,” Solar Energy Materials & Solar cells, vol. 95, pp.73-76, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊