跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃如斌
研究生(外文):Ru-Ben Huang
論文名稱:應用倒傳遞類神經網路於太陽電池模組之品質評價研究
論文名稱(外文):Study of Back Propagation Neural Network for Quality Evaluation of PV Modules
指導教授:蔡明忠蔡明忠引用關係
指導教授(外文):Ming-Jong Tsai
口試委員:蔡明忠
口試委員(外文):Ming-Jong Tsai
口試日期:2013-01-23
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:自動化及控制研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:129
中文關鍵詞:類神經網路(ANN)使用者介面(UI)太陽電池模組評價分級可靠度試驗電致發光(EL)影像
外文關鍵詞:Artificial neural network(ANN)User interface (UI)PV ModulesQuality evaluationAging testEL image
相關次數:
  • 被引用被引用:2
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討太陽電池模組缺陷造成品質影響的關聯機制,進行品質評價分級研究。首先建立太陽電池模組缺陷因子與影響品質評價分類制定,使用類神經網路技術進行模型建立,自動調配缺陷因子間權重值。輸入參數依據矽晶模組國際驗證規範(IEC61215),所測得試驗前後之最大輸出功率及EL影像量化指標的衰減比率、後測絕緣電阻及濕漏電阻正規化指標,輸出參數評價分為3級(A、B、C)。類神經網路學習採用30組訓練資料,採用4個神經元之模型訓練完成,並以30組測試資料驗證其評價結果,評價測試結果判別成功率為93.3%。
This study investigates the correlation mechanism between the quality and defect in solar cell modules. First, defect factors for photovoltaic modules and classifications for effects on quality evaluations were developed. Models were then constructed using artificial neural network technology and the weight values between defect factors were automatically allocated by giving several learning data. The input parameters were adopted based on internationally verified standards for silicon modules (International Electrotechnical Commission, IEC61215), including the attenuation ratio of maximum output power and the EL image quantitative indicators, insulation resistance and wet leakage resistance regularization indicators. The output parameters were assigned evaluation classifications of A, B, and C. By using 30 set of training data, a best neural network model with 4 internal nodes is obtained. The minimum mean square error is 2.98*10-14. From validation evaluation results for another 30 set of test data, the successful rate is 93.3%.
目錄
摘 要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究方法 2
1.4 本文架構 3
第二章、相關文獻與技術探討 4
2.1 太陽模組失效分析 4
2.2 高效率太陽電池模組 5
2.3 太陽模組測試規範(IEC61215) 10
2.4 電致發光(Electroluminescence, EL)影像檢測 15
2.5 類神經網路(Artificial Neural network , ANN) 17
2.5.1 類神經網路品質評價文獻回顧 17
2.5.2 類神經網路 18
2.5.3 倒傳遞類神經網路 20
2.5.4 倒傳遞類神經網路架構 23
2.6 MATLAB使用者介面 25
第三章 類神經模型與使用者介面 26
3.1 類神經網路模型建立 26
3.2 MATLAB類神經網路架構 39
3.3 倒傳遞類神經網路的訓練流程 41
3.4 類神經網路模型匯出 44
第四章 電池模組品質評價系統建立與驗證 49
4.1 太陽模組評價因子決定 49
4.2 品質分級範圍與品質定義 53
4.3 類神經網路品質評價模型建立 58
4.4 類神經網路訓練資料 62
4.5 太陽模組缺陷評價系統使用者介面操作流程 72
4.6 太陽模組品質評價系統實際應用情況 90
第五章 結論與未來研究方向 93
5.1 結論 93
5.2 未來研究方向 94
參考文獻 95
附件 電池模組品質評價系統程式碼 100
[1]宋獎喜、黃清潭、宋洪義,「太陽光電模組安全認證IEC 61730測試標準介紹」,工業材料雜誌,第263期(2008)。
[2]張振燦,太陽光電發電系統設計與施工,科技圖書,台灣,第148-163頁(2009)。
[3]IEC 61215, Crystalline silicon terrestrial photovoltaic (PV) modules - Design qualification and type approval, International Elector-technical Elector Commission,Geneva Switzerland, (2005)
[4]黃振隆、葉芳耀,「太陽光電模組織構造應用與封裝製程」,工業材料雜誌,第203期(2004)
[5]G. TamizhMani, B. Li, T. Arends, J. Kuitche, B. Raghuraman, W. Shisler, K. Farnsworth, J. Gonzales, A. Voropayev and P. Symanski., “Failure analysis of design qualification testing 2007 VS. 2005” , Photovoltaic Specialists Conference, San Diego, CA, USA, (2008)
[6]J. H. Wohlgemuth, D. W. Cunningham, A. M. Nguyen and J. Miller, “Long Term Reliability of PV Modules,”Twentieth European Photovoltaic Solar Energy Conference and Exhibition (PVSEC2005),Barcelona, Spain, June 6-10 pp.1942, (2005)
[7]Rahul Khatri , Shivani Agarwal, Ivan Saha, Sunit Kumar Singh, and Bikash Kumar, “Study on long term reliability of photo-voltaic modules and analysis of power degradation using accelerated aging tests and electroluminescence technique,” Energy Procedia 8, pp.396-401 (2011)
[8]John H. Wohlgemuth, Sarah Kurtz,“Reliability testing beyond Qualification as a key component in photovoltaic's progress toward grid parity,” 2011 IEEE International Conference on Reliability Physics Symposium (IRPS), April 10-14, , Monterey, CA, USA. (2011)
[9]劉智生、洪儒生,太陽電池的高效率化,科學發展,第439期,(2009)。
[10]鄭名山,太陽發電簡介,物理雙月刊,(2007)。
[11]B. Lee, J. Z. Liu, B. Sun, C. Y. Shen, G. C. Dai, “Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell,” eXPRESS Polymer Letters Vol.2, No.5 pp357–363, (2008)
[12]陳心怡,「太陽能電池板表面瑕疵檢測」,碩士論文,國立中央大學,中壢 (2007)。
[13]Liu, F. Romero, M.J. Jones, K.M. Kunz, O. Wong, J. Reedy, R.C. Aberle, A.G.Al-Jassim,M.M.“Characterization of Evaporated Solid–Phase Crystallized Silicon Thin–film Solar Cells on Glass,” Photovoltaic Specialists Conference (PVSC), 34th IEEE 7-12 June, pp.445- 449, (2009)
[14]P. Grunow, S. Krauter, “Modelling of the Encapsulation Factors for Photovoltaic Module,” IEEE Xplore, pp.2152-2155, ( 2006)
[15]Keith.R. McIntosh, et al., “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Photovoltaic. Dow Corning Corporation. (2009)
[16]蔡明忠、郭鴻飛、彭成瑜、楊明輔、鄭兆宏,“Epoxy-based太陽能模組封裝製程之技術” ,機械月刊自動化專輯,第37卷第10期,第20-30頁, (2011)。
[17]經濟部能源局,95年~104年長期負載預測與電源開發規劃摘要報告, 2007年。
[18]莊嘉琛,太陽能工程-太陽電池篇,全華圖書公司(1997)。
[19]www.pvall.com供應SHA-PV-SD濕漏電流測試系统。
[20]IEC 61215, crystalline silicon terrestrial photovoltaic (PV) modules - Design qualification and type approval, International Elector-technical Elector Commission, Geneva Switzerland, (2005)
[21]陳秋惠、劉定坤,太陽能電池之電致發光缺陷檢測技術,第十屆全國AOI論壇與展覽大會手冊,(2010)。
[22]Stefan Kreutzer,Paul Grunow,“Wafer, cell and module quality requirements,” Photovoltaic Institute Berlin AG, TU-Berlin, Germany, Photovoltaics International, First Edition, pp. 59-65, (2008)
[23]Shravan Kumar Chunduri, “displaying defect,” photon international, Jan. (2009)
[24]Xue-jun Wu, Lan-e Luo, Xiu-xin Wang, “Objective Evaluation of Artistic Voice of Singing Based on BPNN,” 2009 Third International Conference on Genetic and Evolutionary Computing, (2009)
[25]Ming-Jong Tsai, Chen-Hao Li, Cheng-Che Chen, “Optimal Laser Cutting Parameters for QFN Packages by Utilizing Artificial Neural Networks and Genetic Algorithm,”Journal of Materials Processing Technology, Vol. 208, pp. 270-283, (2008)
[26]Ming-Jong Tsai, Chen-Hao Li, “Prediction of Laser Cutting Qualities for QFN Strips by Using Levenberg-Marquardt-based Neural Network,” Journal of the Chinese Society of Mechanical Engineers (EI/SCI), Vol.31, No.4, pp.273-280, Aug. , (2010)
[27]Sanjay Mishra, Vinod Yadava, “Modeling and optimization of laser beam percussion drilling of thin aluminum sheet,” Optics &; Laser Technology Volume 48, pp. 461-474 ( 2013)
[28]Nantian Huang, Dianguo Xu, Xiaosheng Liu, Lin Lin, “Power quality disturbances classification based on S-transform and probabilistic neural network,” Bio-inspired computing and applications. (LSMS-ICSEE ' 2010) Neurocomputing Volume 98,pp.12-23, (2012)
[29]Jiangfeng Li, Chunfang Kong, Liping Qu, Jianghong Zhu, Zhongda Chen, “Yida Luo BPNN and GIS based Construction Land Geo-Environment Suitability Evaluation,” International Conference of Computational Intelligence and Software Engineering. (2009)
[30]A.T.C.Goh, W. Zhang, “Reliability assessment of stability of underground rock caverns,” International Journal of Rock Mechanics and Mining Sciences, Volume 55, pp.157-163 (2012)
[31]Satar Mahdevari, Seyed Rahman Torabi,“Prediction of tunnel convergence using Artificial Neural Networks,” Tunnelling and Underground Space Technology,Volume 28, pp.218-228 (2012)
[32]羅華強,類神經網路: MATLAB的應用,高立書局,(2005)。
[33]Philip D. Wasserman,盧炳勳,曹登發,類神經網路理論與應用,全華科技圖書公司,(1993)。
[34]林俊良,智慧型控制分析與設計,全華圖書股份有限公司,(2009)。
[35]張斐章、張麗秋,類神經網路導論,滄海書局,(2010)。
[36]張智星,MATLAB程式設計【入門篇】,鈦思科技,(2004)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top