跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳祈良
研究生(外文):Chi-Liang Chen
論文名稱:密度泛函理論於鋰在石墨烯與石墨擴散機制之研究:邊緣修飾之影響
論文名稱(外文):Density Functional Theory Study of the Lithium Diffusion in Graphene and Graphite: Effect of Edge Modification
指導教授:江志強江志強引用關係
指導教授(外文):Jyh-Chiang Jiang
口試委員:江志強
口試委員(外文):Jyh-Chiang Jiang
口試日期:2013-06-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:70
中文關鍵詞:邊緣修飾第一原理計算石墨稀石墨擴散
外文關鍵詞:edge modificationfirst-principlesgraphenegraphitelithium diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
在可充電鋰離子電池之陽極中,廣泛使用以碳為基礎的材料,如石墨。鋰在碳材料的擴散主要影響可逆鋰儲存量、庫倫效率與充電時間。在本次論文中,以第一混成密度泛函理論 (first-principles hybrid density functional theory) 計算鋰在原始與邊緣修飾的石墨烯和石墨之吸附狀態與擴散機制。從計算結果展現,鋰在所有的體系中,較優先吸附於碳環中心的位置上,且邊緣修飾體系比原始體系具有獨特的邊緣效應,邊緣修飾體系顯著增強鋰之建結能與遷移率。其中邊緣以氧原子修飾的石墨烯體系中,鋰擴散至邊緣地區,具有最高的擴散速率,因此,可作為鋰離子電池之高充放電的陽極材料。反觀,在邊緣修飾的石墨系統中,不同的邊緣修飾沒有顯著的影響鋰的擴散性,因此,未來的研究建議朝向不同邊緣修飾石墨系統如何影響固體電解質介面的形成。
Carbon-based materials such as graphite are most commonly used as an anode in rechargeable lithium-ion batteries. The diffusion mechanism of lithium on carbon-based materials is the governing factors which control the reversible storage, the coulombic efficiency and charging times. In this work, we study adsorption and diffusion of lithium in pristine and edge functionalized graphene and graphite by means of first-principles hybrid density functional theory calculations. It is found that lithium adatoms adsorb preferentially on hollow sites in all systems. Because of the presence of unique edge states, the edge modified systems exhibit remarkably enhanced lithium binding energies with significantly better Li mobility. Our results indicate O-terminated graphene systems have the fastest Li diffusion rate towards the edge by crossing the diffusion barriers which gradually decrease toward the edge compared to H and OH-terminated graphene systems, hence are promising candidate for high performance anode materials of rechargeable lithium ion batteries with fast charge/discharge rates and high power density. Compared to the edge modified of graphene, Li diffusion in different edge modified of graphite has not significant edge effect. Hence for future study, our suggestion focuses on edge effect towards to the formation process of the solid electrolyte interface on the anode surface.
Chapter 1 Introduction
1.1 Principle of Li Ion Battery
1.2 Main Component of Li Ion Battery
1.2.1 Cathode Material
1.2.2 Anodes Material
1.2.3 Electrolytes
1.3 About This Work
Chapter 2 Computational Details
Chapter 3 Results and Discussion
3.1 Pristine Graphene and Graphite
3.1.1 Adsorption and Diffusion Paths of Li on Pristine Graphene
3.1.2 Adsorption and Diffusion Paths of Li Intercalated in Pristine Graphite
3.2 Edge Modified of Graphene and Graphite
3.2.1 Adsorption and Diffusion Paths of Li on Edge Modified of Graphene
3.2.2 Adsorption and Diffusion Paths of Li Intercalated in Edge Modified of Graphite
3.3 Electronic Properties Analysis of Pristine and Edge Modified Graphene and Graphite
Chapter 4 Conclusion
Reference
1.Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D. W.; Vissers, D. R.; Thackeray, M. M. Journal of Power Sources 1999, 81-82, 902.
2.Scrosati, B. Electrochimica Acta 2000, 45, 2461.
3.Megahed, S.; Ebner, W. Journal of Power Sources 1995, 54, 155.
4.Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
5.Nagaura, T.; Tozawa, K. Progress in batteries and solar cells 1990, 9, 209.
6.Fong, R. a. Journal of The Electrochemical Society 1990, 137, 2009.
7.Fuel and Energy Abstracts 2001, 42, 240.
8.Besenhard, J. O.; Winter, M. ChemPhysChem 2002, 3, 155.
9.Dey, A. N.; Sullivan, B. P. Journal of the Electrochemical Society 1970, 117, 222.
10.Aurbach, D.; Y. Ein-Eli, B. M.; Zaban, A.; Luski, S.; Carmeli, Y.; H. Yamin Journal of the Electrochemical Society 1995, 142, 2882.
11.Ohzuku, T.; Iwakoshi, Y.; Sawai, K. Journal of the Electrochemical Society 1993, 140, 2490.
12.Dahn, J. Physical Review B 1991, 44, 9170.
13.Guerard, D.; Herold, A. Carbon 1975, 13, 337.
14.Treacy, D. J.; Taylor, P. C.; Klein, P. B. Solid State Commun 1981, 39, 423.
15.Aurbacha, D.; Markovskya, B.; Weissmana, I.; Levia, E.; Ein-Eli, Y. Electrochimica Acta 1999, 45, 67.
16.Shao-Horn, Y.; Croguennec, L.; Delmas, C.; Nelson, E. C.; O'Keefe, M. A. Nature Materials 2003, 2, 464.
17.Li, T.; Qiu, W.; Zhao, R.; Xia, H.; Zhao, H.; J. Liu Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 2008, 15, 74.
18.Brandt, K. Solid State Ion 1994, 69, 173.
19.Koksbang, R.; Barker, J.; Shi, H.; Saidi, M. Y. Solid State lonics 1996, 84, 1.
20.Rossen, E.; Reimers, J. N.; Dahn, J. R. Solid State Ionics 1993, 62, 53.
21.Garcia, B.; Farcy, J.; Pereira-Ramos, J. P.; Perichon, J.; Baffler, N. Journal of Power Sources 1995, 54, 373.
22.Ohzuku, T.; Ueda, A.; Kouguchi, M. Journal of The Electrochemical Society 1995, 142, 4033.
23.Arai, H.; Okada, S.; Sakurai, Y.; Yamaki, J.-i. Solid State Ionics 1998, 109, 295.
24.Stoyanova, R. Solid State Ionics 2003, 161, 197.
25.Albrecht, S.; Kumpers, J.; Kruft, M.; Malcus, S.; Vogler, C.; Wahl, M.; Wohlfahrt-Mehrens, M. Journal of Power Sources 2003, 119-121, 178.
26.Guilmard, M.; Croguennec, L.; Denux, D.; C. Delmas Chemistry of Materials 2003, 15, 4476.
27.Kim, Y.; Kim, D.; Kang, S. Chemistry of Materials 2011, 23, 5388.
28.M.M.Thackeray; W.I.F.David; P.G.Bruce; J.B.Goodenough Materials Research Bulletin 1983, 18, 431.
29.Guyomard, D.; Tarascon, J. M. Journal of The Electrochemical Society 1992, 139, 937.
30.Tarascon, J. M.; Guyomard, D. Electrochimica Acta 1993, 38, 1221.
31.Lee, S.-W.; Kim, K.-S.; Moon, H.-S.; Lee, J.-P.; Kim, H.-J.; Cho, B.-W.; Cho, W.-I.; Park, J.-W. Journal of Power Sources 2004, 130, 227.
32.Chen, J.-S.; Wang, L.-F.; Fang, B.-J.; Lee, S.-Y.; Guo, R.-Z. Journal of Power Sources 2006, 157, 515.
33.Shu, D. Solid State Ionics 2003, 160, 227.
34.Xia, Y.; Sakai, T.; Fujieda, T.; Yang, X. Q.; Sun, X.; Ma, Z. F.; McBreen, J.; Yoshio, M. Journal of The Electrochemical Society 2001, 148, A723.
35.Xia, Y.; Zhou, Y.; Yoshio, M. Journal of The Electrochemical Society 1997, 144, 2593.
36.EinEli, Y.; Howard, W. F.; Lu, S. H.; Mukerjee, S.; McBreen, J.; Vaughey, J. T.; M.M.Thackeray Journal of The Electrochemical Society 1998, 145, 1238.
37.Dokko, K.; Horikoshi, S.; Itoh, T.; Nishizawa, M.; Mohamedi, M.; Uchida, I. Journal of Power Sources 2000, 90, 109.
38.Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochemistry Communications 2003, 5, 940.
39.Lee, S.-W.; Kim, K.-S.; Moon, H.-S.; Kim, H.-J.; Cho, B.-W.; Cho, W.-I.; Ju, J.-B.; Park, J.-W. Journal of Power Sources 2004, 126, 150.
40.Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Journal of The Electrochemical Society 1997, 144, 1188.
41.MacNeila, D. D.; Lub, Z.; Chenb, Z.; Dahna, J. R. Journal of Power Sources 2002, 108, 8.
42.Takahashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ionics 2002, 148, 283.
43.Thackeray, M. Nature Materials 2001, 1, 81.
44.Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. Journal of The Electrochemical Society 1997, 144, 1609.
45.Takahashi, M.; Tobishima, S.; Takei, K.; Sakurai, Y. Journal of Power Sources 2001, 97-98, 508.
46.Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochemical and Solid-State Letters 2003, 6, A53.
47.Andersson, A. S.; Kalska, B.; Haggstrom, L.; Thomas, J. O. Solid State Ionics 2000, 130, 41.
48.Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M. Nature Materials 2002, 1, 123.
49.Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochemistry Communications 2001, 3, 505.
50.Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; M. Armand Journal of Power Sources 2001, 97, 503.
51.Huang, H.; Yin, S. C.; Nazar, L. F. Electrochemical and Solid-State Letters 2001, 4, A170.
52.Van Schalkwijk, W. A.; Scrosati, B. Advances in Lithium Ion Batteries. Springer New York, 2002.
53.Tan, J. C.; Cheetham, A. K. Chemical Society reviews 2011, 40, 1059.
54.E. Peled, D. Golodnitsky, J. Penciner, The anodeelectrolyte interface, in J.O. Besenhard (Ed.), Handbook of Battery Materials, Wiley–VCH, Weinheim, 1999, pp. 419–456, and references therein.
55.Spahr, M. E.; Wilhelm, H.; Joho, F.; Panitz, J.-C.; Wambach, J. r.; Novak, P.; Dupont-Pavlovsky, N. Journal of The Electrochemical Society 2002, 149, A960.
56.Y.P.Wu; C.Wan; Jiang, C.; Fang, S. B.; Jiang, Y. Y. Carbon 1990, 37, 1901.
57.Peled, E. Journal of The Electrochemical Society 1996, 143, L4.
58.Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejon, P. Physical Review B 2002, 66.
59.Yazyev, O.; Helm, L. Physical Review B 2007, 75.
60.Balandin, A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; N.Lau, C. Nano Letters 2008, 8, 902.
61.Wang, G.; Shen, X.; Yao, J.; Park, J. Carbon 2009, 47, 2049.
62.Dahn, J. R.; Sacken, U. v.; Juzkow, M. W.; Al-Janaby, H. Journal of the Electrochemical Society 1991, 138, 2207.
63.Koetschau, I.; Richard, M. N.; Dahn, J. R.; Soupart, J. B.; Rousche, J. C. Journal of the Electrochemical Society 1995, 142, 2906.
64.Chu, A. C.; Josefowicz, J. Y.; Farrington, G. C. Journal of the Electrochemical Society, 1997, 144, 4161.
65.Ein-Eli, Y.; Thomas, S. R.; Koch, V.; Aurbach, D.; Markovsky, B.; Schechter, A. Journal of the Electrochemical Society 1996, 143, L273.
66.D. Chua, A. Choblet, V. Manivanna, H.W. Lin, J. Wolfenstine, Advances in cathode technology for Li-ion batteries, in, 2001, pp. 275.
67.Ue, M.; Murakami, A.; Nakamura, S. Journal of The Electrochemical Society 2002, 149, A1572.
68.Koch, V. R.; Dominey, L. A.; Nanjundiah, C.; Ondrechen, M. J. Journal of the Electrochemical Society 1996, 143, 798.
69.Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. Electrochimica Acta 2002, 47, 1423.
70.Nanjundiah, C.; Goldman, J. L.; Dominey, L. A.; Koch, V. R. Journal of the Electrochemical Society 1988, 135, 2914.
71.Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; T.B. Curtis The Journal of Physical Chemistry C 2007, 111, 7411.
72.Xu, K. Chemical Reviews 2004, 104, 4303.
73.Xu, K.; Lee, U.; Zhang, S. S.; Jow, T. R. Journal of The Electrochemical Society 2004, 151, A2106.
74.Zhang, S. S. Journal of Power Sources 2006, 162, 1379.
75.Fu, L. J.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q. Solid State Sciences 2006, 8, 113.
76.Wu, Y. P.; Jiang, C.; Wan, C.; Holze, R. Electrochemistry Communications 2002, 4, 483.
77.Placke, T.; Siozios, V.; Schmitz, R.; Lux, S. F.; Bieker, P.; Colle, C.; Meyer, H. W.; Passerini, S.; Winter, M. Journal of Power Sources 2012, 200, 83.
78.Balasooriya, N. W. B.; Touzain, P.; Bandaranayake, P. W. S. K. Ionics 2007, 13, 305.
79.WU, Y. P.; JIANG, C.; WAN, C.; HOLZE, R. Journal of Applied Electrochemistry 2002, 32, 1011.
80.Kresse, G.; Furthmler, J. Computational Materials Science 1996, 6, 15.
81.Kresse, G.; Furthmler, J. Physical Review B 1996, 54, 11169.
82.Vanderbilt, D. Physical Review B 1990, 41, 7892.
83.Blochl, P. E. Physical Review B 1994, 50, 17953.
84.Kresse, G.; Joubert, D. Physical Review B 1999, 59, 1758.
85.Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Journal of chemical physics 2005, 122, 234102.
86.Paier, J.; Marsman, M.; Kresse, G. The Journal of chemical physics 2007, 127, 024103.
87.Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Angyan, J. G. The Journal of chemical physics 2006, 124, 154709.
88.Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Angyan, J. G. The Journal of chemical physics 2006, 125, 249901.
89.Fuchs, M.; Bockstedte, M.; Pehlke, E.; Scheffler, M. Physical Review B 1998, 57, 2134.
90.Janesko, B. G.; Henderson, T. M.; Scuseria, G. E. Physical chemistry chemical physics : PCCP 2009, 11, 443.
91.Ramasubramaniam, A. Physical Review B 2010, 81.
92.Becke, A. D. The Journal of chemical physics 1993, 98, 5648.
93.Lee, C.; Yang, W.; Parr, R. G. Physical Review B 1988, 37, 785.
94.Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chemical Physics Letters 1989, 157, 200.
95.Fang, T.; Konar, A.; Xing, H.; Jena, D. Applied Physics Letters 2007, 91, 092109.
96.Mohr, M.; Maultzsch, J.; Dobardžić, E.; Reich, S.; Milošević, I.; Damnjanović, M.; Bosak, A.; Krisch, M.; Thomsen, C. Physical Review B 2007, 76.
97.Trucano, P.; Chen, R. Nature 1975, 258, 136.
98.Riedl, C.; Coletti, C.; Starke, U. Journal of Physics D: Applied Physics 2010, 43, 374009.
99.CHUNG, D. D. L. Journal of Materials Science 2002, 37, 1475.
100.Karpan, V.; Giovannetti, G.; Khomyakov, P.; Talanana, M.; Starikov, A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. Physical Review Letters 2007, 99.
101.Monkhorst, H. J.; Pack, J. D. Physical Review B 1976, 13, 5188.
102.Henkelman, G.; Jonsson, H. The Journal of chemical physics 2000, 113, 9978.
103.Henkelman, G.; Uberuaga, B. P.; Jonsson, H. The Journal of chemical physics 2000, 113, 9901.
104.Fan, X.; Zheng, W. T.; Kuo, J. L. ACS applied materials & interfaces 2012, 4, 2432.
105.Uthaisar, C.; Barone, V. Nano Lett 2010, 10, 2838.
106.Zheng, J.; Ren, Z.; Guo, P.; Fang, L.; Fan, J. Applied Surface Science 2011, 258, 1651.
107.Uthaisar, C.; Barone, V.; Peralta, J. E. Journal of Applied Physics 2009, 106, 113715.
108.Caragiu, M.; Finberg, S. Journal of Physics: Condensed Matter 2005, 17, R995.
109.Diehl, R. D.; McGrath, R. Journal of Physics: Condensed Matter 1997, 9, 951.
110.Chan, K. T.; Neaton, J. B.; Cohen, M. L. Physical Review B 2008, 77.
111.Bade, R. F. W. Atoms in Molecules A Quantum Theory; Oxford University Press New York, 1990.
112.Henkelman, G.; Arnaldsson, A.; Jonsson, H. Computational Materials Science 2006, 36, 354.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊