跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宗憲
研究生(外文):Zong-sian Yang
論文名稱:篩選酚合成的觸媒之研究
論文名稱(外文):Catalyst screening for the synthesis of phenol
指導教授:劉端祺
指導教授(外文):Tuan-Chi Liu
口試委員:劉端祺
口試委員(外文):Tuan-Chi Liu
口試日期:2013-07-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:模板中孔
外文關鍵詞:phenolbenzenetemplatemesoporous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討製備變數對含銅磷酸鋁分子篩 (CuAlPO4)觸媒性質的影響,並藉此了解合成具高酚生成活性之CuAlPO4所需的條件。首先就水熱合成法及一步合成法進行比較研究,於水熱合成時分別使用了TPA、F127及TPA和F127的混合模板,於一步合成時則僅用F127為模板,結果顯示使用TPA或混合模板合成的分子篩活性皆不佳,使用F127為模板所合成的分子篩中,以一步合成所製備者活性較佳。
次就一步合成法進行製備變數的優化研究,探討模板用量、銅含量及鍛燒溫度對分子篩活性的影響,結果顯示每莫耳AlPO4使用1克F127及0.1莫耳銅最為恰當,鍛燒溫度則以450oC最佳。
所合成的觸媒以X-光繞射光譜(XRD)、氮氣等溫吸/脫附(BET)、場發射穿透式電子顯微鏡(FESEM)、氨氣程式升溫脫附(NH3-TPD)、熱重分析(TGA)及穿透式電子顯微鏡(TEM)鑑定其物理性質。以酚的合成測試其反應活性。
酚的合成在液相中進行,使用批式反應器,反應物為苯及雙氧水,以乙腈為溶劑。實驗的結果發現,產物的選擇性極高,除酚外並沒有發現其它有機產物。在50-70℃所得的反應活化能為73.2 kJ/mol。
觸媒的活性中心判斷在AlPO4的表面,銅則扮演促進劑的角色。
反應時觸媒有嚴重的失活現象,原因為積碳及銅的流失。觸媒可經清洗及燒除積碳而恢復活性,但再生觸媒的活性不及原新鮮觸媒。觸媒失活的速度與反應液中H2O2的濃度有關,低濃度的H2O2有防止觸媒失活的效應。
The objective of this study was to examine the effects of preparation variables on the catalytic properties of CuAlPO4 molecular sieve, and to know the conditions required to synthesize a CuAlPO4 of high activity in the synthesis of phenol. The study began with the comparison of two synthesis methods, the hydrothermal and one-step methods, for the molecular sieves. Two templates, TPA and F127 and their mixture were used in the hydrothermal method. But the one-step method used only F127. The results showed that the molecular sieves prepared using TPA as a template were not very active. Of the molecular sieves prepared using F127, the one from one-step method exhibited superior activity.
Next, attempts were made on optimizing the one-step method. The factors examined were the quantity of F127 and copper used and the calcination temperature. The results showed that for each mole of AlPO4, the most appropriate amounts of F127 and copper were 1g and 0.1 mole respectively and with the optimal calcination temperature being 450℃.
The catalysts prepared in this study were characterized by XRD, BET, FESEM, NH3-TPD, TGA, and TEM. The activities of the catalysts were examined by phenol syntheses.
Syntheses were carried in liquid phase using a batch reactor. The reactants were benzene and hydrogen peroxide with acetonitrile as the solvent. The product selectivity was extremely high with no other organic product being detected except phenol. The activation energy determined based on the data taken from 50-70℃ was 73.2 kJ/mol.
The active center was found on AlPO4 surface. Copper played a role as a catalyst promoter. Serious catalyst deactivation was detected due mainly to coking and copper leaching. Deactivated catalyst could be regenerated by washing and burning off the carbon deposit. However, the activity of the regenerated catalyst was less than the original fresh one. The rate of deactivation was related to the concentration of hydrogen peroxide. Using low concentration of hydrogen peroxide in the reaction could prevent the deactivation.
目錄
摘要 ............................................................................................................. I
ABSTRACT .............................................................................................. III
誌謝 ............................................................................................................ V
目錄 .......................................................................................................... VI
表目錄 ........................................................................................................ X
圖目錄 ...................................................................................................... XI
第一章 緒論............................................................................................... 1
1.1 前言.............................................................................................. 1
1.2 研究動機與目的 ......................................................................... 2
第二章 文獻回顧 ...................................................................................... 3
2.1 酚 .................................................................................................. 3
2.1.1 酚的基本性質及用途 ...................................................... 3
2.1.2 酚的合成方法 .................................................................. 5
2.2 苯直接氧化製酚 ....................................................................... 10
2.2.1 以O2 為氧化劑 ............................................................... 10
2.2.2 以N2O 為氧化劑 ............................................................ 10
2.2.3以H2O2為氧化劑 ........................................................... 12
2.3 磷酸鋁分子篩 ........................................................................... 13
2.4 含銅磷酸鋁分子篩CuAlPO4 ................................................... 17
2.4.1 微孔型磷酸鋁分子篩 .................................................... 18
2.4.2 中孔型磷酸鋁分子篩 .................................................... 19
2.4.3 界面活性劑(模版) .......................................................... 20
第三章 實驗............................................................................................. 21
3.1實驗藥品、氣體與儀器設備 .................................................... 21
3.1.1 實驗藥品 ........................................................................ 21
3.1.2 實驗氣體 ........................................................................ 22
3.1.3 實驗儀器設備 ................................................................ 23
3.2 觸媒製備 ................................................................................... 24
3.2.1 微孔型含銅磷酸鋁分子篩 ............................................ 24
3.2.2 中孔型含銅磷酸鋁分子篩 ............................................ 25
3.2.3 混合孔型含銅磷酸鋁分子篩 ........................................ 27
3.3 以雙氧水氧化苯製酚的反應 ................................................... 28
3.3.1 液相反應裝置 ................................................................ 28
3.3.2 分析方法與儀器 ............................................................ 28
3.4 觸媒鑑定 ................................................................................... 30
3.4.1 氮氣等溫吸/脫附 (BET) ............................................... 30
3.4.2 場發射掃描式電子顯微鏡 (FESEM) ........................... 35
3.4.3 X-光繞射光譜分析 (XRD) ............................................ 37
3.4.4 程式升溫脫附 (TPD) .................................................... 39
3.4.5 熱重分析儀 (TGA) ....................................................... 40
3.4.6 穿透式電子顯微鏡 (TEM) ........................................... 41
第四章 觸媒篩選 .................................................................................... 43
4.1 觸媒............................................................................................ 44
4.2 觸媒鑑定 ................................................................................... 45
4.2.1 X-光繞射 (XRD) ............................................................ 45
4.2.2 表面積測定與氣體吸附測定 (BET) ............................ 47
4.2.3 氨氣程溫脫附 (NH3-TPD) ............................................ 52
4.2.4 場發射掃描式電子顯微鏡 (FESEM) ........................... 54
4.3 酚生成之觸媒活性 ................................................................... 57
第五章 一步合成觸媒的改質 ................................................................ 59
5.1 觸媒............................................................................................ 59
5.2 觸媒鑑定 ................................................................................... 61
5.2.1 氮氣吸附鑑定 (BET) .................................................... 61
5.2.2 熱重分析 (TGA) ........................................................... 68
5.2.3 穿透式電子顯微鏡 (TEM) ........................................... 69
5.3 酚生成之觸媒活性 ................................................................... 72
第六章 酚合成反應條件影響 ................................................................ 75
6.1 反應溫度效應 ........................................................................... 75
6.2 雙氧水效應 ............................................................................... 77
6.3 CuAlPO4觸媒的失活與再生 ..................................................... 78
結論 ........................................................................................................... 80
參考文獻 ................................................................................................... 82
表目錄
表 2.4 TYPES OF PORE SIZE ........................................................................ 17
表3.1.1實驗藥品 .................................................................................... 21
表3.1.2實驗氣體 .................................................................................... 22
表3.1.3 實驗儀器設備 ............................................................................ 23
表4.1觸媒製備條件及命名 ................................................................... 44
表4.2.2觸媒物理性質 ............................................................................ 51
表5.1觸媒的合成條件及命名 ............................................................... 60
表5.2一步合成觸媒的物理性質 ........................................................... 67
表6.1反應溫度與反應速率 ................................................................... 76
圖目錄
圖2.3-1 ALPO4-5的結構 ......................................................................... 15
圖2.3-2金屬取代磷或鋁位置的示意圖 ................................................ 16
圖2.4鋁四面體和磷四面體以氧連結的示意圖 ................................... 18
圖3.2.1微孔型含銅磷酸鋁分子篩合成圖 ............................................ 25
圖3.2.2一步合成法製備流程圖 ............................................................ 26
圖3.3 氧化苯製酚反應的實際GC分析圖譜 ....................................... 29
圖3.4.1-1 BDDT分類之六種等溫吸附曲線型態 ................................. 31
圖3.4.1-2四種遲滯環型式 ..................................................................... 34
圖3.4.1-3氣體吸附儀(QUANTACHROME CO. AUTOSORB-1) ................... 35
圖3.4.2 FESEM (JEOL JSM-6500F) ....................................................... 36
圖3.4.3-1 X-光於晶面的繞射 ................................................................. 37
圖3.4.3-2 X-光粉末繞射儀(X' PERT PRO) ............................................. 38
圖3.4.4程式升溫脫附儀器(AUTOCHEM II) ........................................... 40
圖3.4.5熱重分析儀(NETZSCH TG 209) .................................................. 41
圖3.4.6穿透式電子顯微鏡(PHILIPS FEI-TEM ) .................................... 42
圖4.2.1觸媒XRD繞射圖 ...................................................................... 46
圖4.2.2-1觸媒氮氣吸/脫附等溫曲線圖 ................................................ 48
圖4.2.2-2觸媒孔徑分布圖 ..................................................................... 50
圖4.2.3-1觸媒NH3-TPD脫附圖 ........................................................... 53
圖4.2.3-2觸媒氨脫附TCD SIGNAL V.S. BET表面積關係圖 ................ 53
圖4.2.4-1 CUALPO4-T之SEM圖 .......................................................... 55
圖4.2.4-2 CUALPO4-F之SEM圖 .......................................................... 55
圖4.2.4-3 CUALPO4-MIX之SEM圖 ....................................................... 55
圖4.2.4-4 CUALPO4之SEM圖 .............................................................. 56
圖4.3觸媒之酚合成活性圖 ................................................................... 58
圖5.2.1-1改變模板F127比例吸/脫附曲線圖 ...................................... 62
圖5.2.1-2改變CU/AL比例吸/脫附曲線圖 ........................................... 62
圖5.2.1-3改變鍛燒溫度吸/脫附曲線圖 ................................................ 63
圖5.2.1-4改變模板F127比例孔徑分布圖 ........................................... 64
圖5.2.1-5改變CU/AL比例孔徑分布圖 ................................................ 65
圖5.2.1-6改變鍛燒溫度孔徑分布圖 ..................................................... 65
圖5.2.2 CUALPO4鍛燒前固膜TGA圖 ................................................. 68
圖5.2.3-1 0CUALPO4之TEM影像 ........................................................ 70
圖5.2.3-2 1.0CUALPO4之TEM影像 ..................................................... 71
圖5.3-1改變模板F127用量所製備觸媒之酚產率 .............................. 72
圖5.3-2不同銅含量所製備觸媒之酚產率 ............................................ 73
圖5.3-3改變鍛燒溫度所製備觸媒之酚產率 ........................................ 74
圖6.1-1反應溫度對酚產率的影響 ........................................................ 75
圖6.1-2 ARRHENIUS 圖 ............................................................................ 76
圖6.2雙氧水效應之酚產率 ................................................................... 77
圖6.3-1 CUALPO4之EDS (A)反應前; (B)反應後 .................................. 78
圖6.3-2觸媒的再生效應 ........................................................................ 79
參考文獻
[1]Piryutko, L. V., Parenago, O. O., Lunina, E. V., Kharitonov, A. S., Okkel, L. G., Panov, G. I., “ Silylation effect on the catalytic properties of FeZSM-11 in benzene oxidation to phenol ”, React. Kinet., Catal. Lett., 52, 275-283 (1994).
[2]Yin, S. F., Wu, S. S., Dai, W. L., Li, W. S., Huang, M. G., Zhou, X. P., “ Direct phonel synthesis by catalytic oxidation of benzene with molecular oxygen ”, Prog. Chem., 19, 735-744 (2007).
[3]Iwamoto, M., Hirata, J. I., Matsukami, K., Kagawa, S., “ Catalytic oxidation by oxide radical ions. 1. One-step hydroxylation of benzene to phenol over group 5 and 6 oxides supported on silica gel ”, Phys. Chem., 87, 903-905 (1983).
[4]Ono, Y., Fujii, Y., Wakita, H., Kimura, K., Inui, T., “ Catalytic combustion of odors in domestic spaces on ion-exchanged zeolites ”, App. Catal. B-Env., 16, 227-233 (1998).
[5]Burch, R., Howitt, C., “ Direct partial oxidation of benzene to phenol on zeolite catalysts ”, App. Catal. A-Gen., 86, 139-146 (1992).
[6]Liptakova, B., Bahidsky, M., Hronec, M., “ Preparation of phenol from benzene by one-step reaction ”, Appl. Catal. A-Gen., 263, 33-38 (2004).
[7]Hiemer, U., Klemm, E., Scheffler, F., Selvam, T., Schwieger, W., Emig, G., “ Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide ”, Chem. Eng. J., 101, 17-22 (2004).
[8]Yuranov, I., Bulushev, D. A., Renken, A., Kiwi-Minsker, L., “ Benzene hydroxylation over ZSM-5 catalysts: which Fe sites are active? ”, J. Catal., 227, 138-147 (2004).
[9]Panov, G. I., Kharitonov, A. S., Sobolev, V. I., “ Oxidative hydroxylation using dinitrogen monoxide: a possible route for organic synthesis over zeolites ”, Appl. Catal. A-Gen., 98, 1-20 (1993).
[10]Kharitonov, A. S., Panov, G. I., Sheveleva, G. I., Pirutko, L. V.,“ Catalysts for production of phenol and its derivatives ”, U.S. Pat. Re., 36, 856 (2000).
[11]Choi, J.S., Kim, T. H., Choo, K. Y., Sung, J. S., Saiduda, M. B., Song, S. D., Rhee, Y. W., “ Transition metals supported on activated carbon as benzene hydroxylation catalysts ”, J. P. Mat., 12, 301-310 (2005).
[12]Zhang, J., Tang, Y., Lia, G., Hua, C. W., “ Room temperature direct oxidation of benzene to phenol using hydrogen peroxide in the presence of vanadium-substituted heteropolymolybdates ”, Appl. Catal. A-Gen., 278, 251-261 (2005).
[13]Zhong, Y. K., Li, G. Y., Zhu, L. F., Yan, Y., Wu, G., Hu, C. W., “ Low temperature hydroxylation of benzene to phenol by hydrogen peroxide over Fe/activated carbon catalyst ”, J. Mol. Catal. A-Chem., 272, 169-173 (2007).
[14]Sakata, S. I., Nakai, T., Yahiro, H., Shiotani, M., “ An ESR study on reduction-oxidation properties of copper ions in Cu-Pd-H3PO4/SiO2 catatlyst active in direct oxidation of benzene ”, Appl. Catal. A-Gen., 165, 467-472 (1997).
[15]Kunai, A., Hata, S., Ito, S., Sasaki, K., “ Mechanisitic study of air oxidation of benzene in sulfuric acid catalyzed by cuprous ions ”, J. Org. Chem., 51, 3471-3474 (1986).
[16]Chang, C. D., Lang, W. H., Silvertri, A.J., “ Sythesis gas conversion to aromatic hydrocarbons ”J. Catal., 56, 268-273 (1979).
[17]Chang, C. D., Lang, W. H., Smith, R.L., “ The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. II. pressure effects ” J. Catal., 56, 163-173 (1979).
[18]Fujimoto, K., Asami, K., Saima, H., Shikada, T., Tominaga, H. O., “ Two-stage reaction system for synthesis gas conversion to gasoline ”, Ind. Eng. Chem. Prod. Res. Dev., 25,262-267 (1986).
[19]Fujimoto, K., Saima, H., Tominaga, H.O., “ Sythesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid. IV. Selective synthesis of C2, C3, and C4 parffins from synthesis gas ”, J. Catal., 94,16-23 (1985).
[20]Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., Flanigen, E. M., “ Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids ”, J. Am. Chem. Soc., 104, 1146 (1982).
[21]Bennent, J. M., Cohen, J. P., Flanigen, E. M., Pluth, J. J., Smith, J. V., “ Crystal structure of tetrapropylammonium hydroxide-aluminum phosphate number 5 ”, ACS. Symp. Ser., 218, 109 (1983).
[22]吳孝忠,「磷酸鋁分子篩表面酸性的研究」,國立中央大學,化學工程研究所,碩士論文,民國86年。
[23]Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., “ Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids ”, J. Am. Chem. Soc., 106, 6092 (1984).
[24]Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., ” Crystalline silicoaluminophosphates ”, U.S. Pat. 4, 440, 871 (1984).
[25]Wilson, S. T., Flanigen, E. M., “ Crystalline Metal aluminophosphate ”, U.S. Pat. 4, 567, 029 (1986).
[26]Flanigen, E. M., Lok, B. M., Patton, R. L., Wilson, S.,“ Aluminophosphate molecular sieves and the periodic table ”, P. Appl. Chem., 58, 1351-1358 (1986).
[27]Atlas of Zeolite Structure Types, Zeolites, 17, 27 (1996).
[28]Weckhuysen, B. M., Rao, R. R., Marten, J. A., Schoonheydt, R. A., “ Transition metal ions in microporous crystalline aluminophosphates: isomorphous substitution ”, Eur. J. Inorg. Chem., 565-577 (1999).
[29]Cheng, S., Tsai, J. L., Chou, B., “ Cu-substituted molecular sieves as liquid phase oxidation catalysts ”Micro. Meso. Mat., 48, 309-317 (2001).
[30]IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt.1, Collid and Surface Chemistry, P. Appl. Chem., 31, 578, (1972).
[31]Elanany, M., Su. B. L., Vercauteren, D. P., “ Strong templating effect of TEAOH in the hydrothermal genesis of the AlPO4-5 molecular sieve: experimental and computational investigations ”, J. Catal., 270, 295-301 (2007).
[32]Dang, T. T. H., Zubowa, H. L., Bentrup, U., Richter, M., Martin, A., “ Microwave-assisted synthesis and characterization of Cu-containing AlPO4-5 and SAPO-5”, Micro. Meso. Mat., 123, 209–220 (2009).
[33]Qi, X., Zhang, L., Xie, W., Ji, T., Li, R., “ Synthesis of copper-substituted aluminophosphate molecular sieves (CuAPO-11) and their catalytic behavior for phenol hydroxylation ”, Appl. Catal. A- Gen., 276, 89–94 (2004).
[34]Cheng, C. F., Luan, Z., Klinowski, J., “ The role of surfactant micelles in the synthesis of the mesoporous molecular sieve MCM-41 ”, Langmuir., 11, 2815, (1995).
[35]Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chemlka, B. F. , Stucky, G. D., “ Triblock copolymer syntheses of mesoporous silica with priodic 50 to 300 angstrom pores ”, Science, 279, 548, (1998).
[36]Kimura, T., Sugahara, Y., Kuroda, K., “ Sythesis and chraracterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents ”, Chem. Met., 11, 508-518 (1999).
[37]Tiemann, M., Schulz, M., Jager, C., Froba, M., “ Mesoporous aluminophosphate molecular sieves synthesized under nonaqueous conditions ”, Chem. Mat., 13, 2885-2891 (2001).
[38]Wang, L., Tian, B., Fan, J., Liu, X., Yang, H., Yu, C., Tu, B., Zhao, D., “ Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an ‘‘acid–base pair’’ route ”, Micro. Meso. Mat., 67, 123–133 (2004).
[39]陈国华,「微孔磷酸铝分子筛合成、表征及催化性能的研究」,吉 林大学,化学学院,硕士论文,民国98年。
[40]Wang, L., Tian, B., Fan, J., Yu, C., Tu, B., Zhao, D., “ One-step synthesis of large pore mesoporous metallo-aluminophosphates under nonaqueous media ”, Sur. Sci. Catal., 154, 1111–1117 (2004).
[41]Atkin, P. W., in “ Physical chemistry sixth edition”, Oxford Universerty Press, Chap. 28 (1998).
[42]Sing, K. S. W., Everett, D. H., Haul, R. A. W., Koscou, L., Pierotti, R. A., 4, 603-619 (1985).
[43]吳毅洵,「使用中孔型Cu/AlPO4觸媒於酚的合成」,國立台灣科技大學,化學工程研究所,碩士論文,民國九十九年。
[44]Siva Kumara, V., Padmasria, A. H., Satyanarayanab, C. V. V., Ajit Kumar Reddyc, I., David Rajua, B., Rama Raoa, K. S., “ Nature and mode of addition of phosphate precursor in the synthesis of aluminum phosphate and its influence on methanol dehydration to dimethyl ether ”, Catal. Comm., 10, 745–751 (2006).
[45]Mazaj, M., Costacurta, S., Zabukovec, L. N., Mali, G., Novak, T. N., Innocenzi, P., Malfatti, L., Thibault-Starzyk, F., Amenitsch, H., Kaucˇicˇ, V., Soler-Illia, G. J. A. A., “ Mesoporous aluminophosphate thin films with cubic pore arrangement ”, Langmuir, 24, 6220-6225 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊