|
[1] U. Hennings, R. Reimert, Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas, Applied Catalysis A: General 325 (1) (2007) 41-49. [2] A. Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials, Catalysis Reviews 38 (4) (1996) 439-520. [3] C.-Y. Chen, C.-L. Liu, Doped ceria powders prepared by spray pyrolysis for gas sensing applications, Ceramics International 37 (7) (2011) 2353-2358. [4] B. Park, H. Lee, K. Park, H. Kim, H. Jeong, Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry, Journal of Materials Processing Technology 203 (1–3) (2008) 287-292. [5] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 83 (1–2) (1996) 1-16. [6] C. Peng, Y. Wang, K. Jiang, B.Q. Bin, H.W. Liang, J. Feng, J. Meng, Study on the structure change and oxygen vacation shift for Ce1-xSmxO2-y solid solution, Journal of Alloys and Compounds 349 (1-2) (2003) 273-278. [7] C. Ying-Yu, R. Schmid, Y.A. Chang, Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe---Cu---Ni system, Acta Metallurgica 33 (8) (1985) 1369-1380. [8] A. Kelly, K.M. Knowles, Front Matter, in: Crystallography and Crystal Defects, John Wiley & Sons, Ltd, 2012, pp. i-xiv. [9] U.S.D.o. Energy, Fuel Cell Handbook by EG&G Technical Service Inc. , 7thEd., (2004). [10] N.Q. Minh, Ceramic Fuel Cells, Journal of the American Ceramic Society 76 (3) (1993) 563-588. [11] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135 (1–4) (2000) 305-313. [12] Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics 48 (3–4) (1991) 207-212. [13] K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, K. Sasaki, Fuel flexibility in power generation by solid oxide fuel cells, Solid State Ionics 152–153 (0) (2002) 411-416. [14] S.J. Skinner, Recent advances in perovskite-type materials for SOFC cathodes, Fuel Cells Bulletin 4 (33) (2001) 6-12. [15] M. Godickemeier, K. Sasaki, L.J. Gauckler, I. Riess, Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes, Solid State Ionics 86–88, Part 2 (0) (1996) 691-701. [16] C.-L. Chu, J.-Y. Wang, S. Lee, Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering, International Journal of Hydrogen Energy 33 (10) (2008) 2536-2546. [17] S. Linderoth, P.V. Hendriksen, M. Mogensen, N. Langvad, Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks, Journal of Materials Science 31 (19) (1996) 5077-5082. [18] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, Electrolytes for Solid-Oxide Fuel Cells., MRS Bulletin 30 (2005) 591-595. [19] J.W. Fergus, Electrolytes for solid oxide fuel cells, Journal of Power Sources 162 (1) (2006) 30-40. [20] B. Zhu, Solid oxide fuel cell (SOFC) technical challenges and solutions from nano-aspects, International Journal of Energy Research 33 (13) (2009) 1126-1137. [21] T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor, Journal of the American Chemical Society 116 (9) (1994) 3801-3803. [22] N. Ramadass, ABO3-type oxides—Their structure and properties—A bird's eye view, Materials Science and Engineering 36 (2) (1978) 231-239. [23] E.D. Wachsman, G.R. Ball, N. Jiang, D.A. Stevenson, Structural and defect studies in solid oxide electrolytes, Solid State Ionics 52 (1–3) (1992) 213-218. [24] R. Chockalingam, V.R.W. Amarakoon, H. Giesche, Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications, Journal of the European Ceramic Society 28 (5) (2008) 959-963. [25] B.C.H. Steele, Oxygen ion conductors and their technological applications, Materials Science and Engineering: B 13 (2) (1992) 79-87. [26] X. Guan, H. Zhou, Z. Liu, Y. Wang, J. Zhang, High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells, Materials Research Bulletin 43 (4) (2008) 1046-1054. [27] H.-C. Yao, Y.-X. Zhang, J.-J. Liu, Y.-L. Li, J.-S. Wang, Z.-J. Li, Synthesis and characterization of Gd3+ and Nd3+ co-doped ceria by using citric acid–nitrate combustion method, Materials Research Bulletin 46 (1) (2011) 75-80. [28] S. Dikmen, H. Aslanbay, E. Dikmen, O. Şahin, Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell, Journal of Power Sources 195 (9) (2010) 2488-2495. [29] S. Omar, E.D. Wachsman, J.C. Nino, Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials, Solid State Ionics 178 (37–38) (2008) 1890-1897. [30] F.-Y. Wang, S. Chen, S. Cheng, Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells, Electrochemistry Communications 6 (8) (2004) 743-746. [31] X. Sha, Z. Lu, X. Huang, J. Miao, L. Jia, X. Xin, W. Su, Preparation and properties of rare earth co-doped Ce0.8Sm0.2−xYxO1.9 electrolyte materials for SOFC, Journal of Alloys and Compounds 424 (1–2) (2006) 315-321. [32] H. Li, C. Xia, M. Zhu, Z. Zhou, G. Meng, Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics, Acta Materialia 54 (3) (2006) 721-727. [33] V. Singh, S. Babu, A.S. Karakoti, A. Agarwal, S. Seal, Effect of Submicron Grains on Ionic Conductivity of Nanocrystalline Doped Ceria, Journal of Nanoscience and Nanotechnology 10 (10) (2010) 6495-6503. [34] M.R. Kosinski, R.T. Baker, Preparation and property–performance relationships in samarium-doped ceria nanopowders for solid oxide fuel cell electrolytes, Journal of Power Sources 196 (5) (2011) 2498-2512. [35] G.B. Jung, T.J. Huang, C.L. Chang, Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte, Journal of Solid State Electrochemistry 6 (4) (2002) 225-230. [36] G.B. Balazs, R.S. Glass, ac impedance studies of rare earth oxide doped ceria, Solid State Ionics 76 (1–2) (1995) 155-162. [37] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics 52 (1–3) (1992) 165-172. [38] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, Journal of Applied Electrochemistry 18 (4) (1988) 527-531. [39] D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Optimization of ionic conductivity in doped ceria, Proceedings of the National Academy of Sciences of the United States of America 103 (10) (2006) 3518-3521. [40] G.B. Jung, T.J. Huang, M.H. Huang, C.L. Chang, Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method, Journal of Materials Science 36 (24) (2001) 5839-5844. [41] Y. Zheng, S. He, L. Ge, M. Zhou, H. Chen, L. Guo, Effect of Sr on Sm-doped ceria electrolyte, International Journal of Hydrogen Energy 36 (8) (2011) 5128-5135. [42] D. Perez-Coll, P. Nunez, J.R. Frade, J.C.C. Abrantes, Conductivity of CGO and CSO ceramics obtained from freeze-dried precursors, Electrochimica Acta 48 (11) (2003) 1551-1557. [43] B. Li, X. Wei, W. Pan, Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping, International Journal of Hydrogen Energy 35 (7) (2010) 3018-3022. [44] B. Li, Y. Liu, X. Wei, W. Pan, Electrical properties of ceria Co-doped with Sm3+ and Nd3+, Journal of Power Sources 195 (4) (2010) 969-976. [45] T. Mori, J. Drennan, Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes, J Electroceram 17 (2-4) (2006) 749-757. [46] Z.-P. Li, T. Mori, G.J. Auchterlonie, J. Zou, J. Drennan, Direct evidence of dopant segregation in Gd-doped ceria, Applied Physics Letters 98 (9) (2011) 093104-093104-093103. [47] M. Aoki, Y.-M. Chiang, I. Kosacki, L.J.-R. Lee, H. Tuller, Y. Liu, Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, Journal of the American Ceramic Society 79 (5) (1996) 1169-1180. [48] H.L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics 131 (1–2) (2000) 143-157. [49] H.-K. Kim, W.-S. Ko, H.-J. Lee, S.G. Kim, B.-J. Lee, An identification scheme of grain boundaries and construction of a grain boundary energy database, Scr. Mater. 64 (12) (2011) 1152-1155. [50] E.B.a.J.R. Macdonald, Impedance spectroscopy, theory experiment and applications, Second Edition ed., John Wiley & Sons, Inc., Hoboken, New Jersey., 2005. [51] V. Randle, Overview No. 127 The role of the grain boundary plane in cubic polycrystals, Acta Materialia 46 (5) (1998) 1459-1480. [52] V. Randle, Twinning-related grain boundary engineering, Acta Materialia 52 (14) (2004) 4067-4081. [53] M. L. Kronberg and F. H. Wilson, Transactions of the American Institute of Mining and Metallurgical Engineers 185, 501 (1949). [54] G. Palumbo and K. T. Aust, Acta Metallurgica et Materialia 38, 2343 (1990). [55] S.-J. Shih, S. Lozano-Perez, D.J.H. Cockayne, Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3, Journal of Materials Research 25 (02) (2010) 260-265.
|