[1]Christian Rudolf Sohar, “Lifetime Controlling Defects in Tool Steels”, doctoral thesis accepted by Vienna University of Technology(2011).
[2]Alan M. Bayer, Bruce A. Becherer and Teledyne Vasco, “High.Speed Tool Steels”, ASM Handbook, 16, 51-59(1989).
[3]Christian Hojerslev, “Tool Steels”(2001).
[4]Roberts G, Krauss G, Kennedy R, “Tool steels”, 5th edn. ASM, Metals Park, Ohio, USA (1998).
[5]G. Hoyle, “High Speed Steel”, Butterworth & Co. Ltd, Cambridge, England (1988).
[6]George A. Roberts and Robert A. Cary, “Tool Steels” (1980).
[7]游宗翰,”粉末高速鋼GPM A30回火相變態之研究”,台灣大學碩士論文(1999)。[8]T. Mukherjee, “Physical metallurgy of high-speed steel” (1968).
[9]葉明堂,”SKD-11模具鋼之熱處理”,台灣大學碩士論文(1983)。[10]Eckhard Pippel, Jorg Woltersdorf, Gottfried Pockl and Gerhard Lichtenegger, “Microstructure and Nanochemistry of Carbide Precipitates in High-Speed Steel S 6-5-2-5”, 43, 41- 55(1999).
[11]N. Sarafianos, “The effect of the Austenitizing heat-treatment variables on the fracture thoughness of high speed steel”, Metallurgical and Materials Transaction A, 28A, 2089-2099(1997).
[12]喻世祿,高速鋼與高速鋼鍛造,國防工業出版社(1989)。
[13]M. M. Serna, E. R. B. Jesus, E. Galego, L. G. Martinez, H. P. S.Correa and J. L. Rossi, “An Overview of the Microstructures Present in High-Speed Steel Carbides Crystallography”, Materials Science Forum, 530-531, 48-52(2006).
[14]Xiaodan Zhang, Wei Liu, Dale Sun and Youguoli, ”The Transformation of Carbides during Austenization and Its Effect on the Wear Resistance of High Speed Steel Rolls”, Metallurgical and Materials Transactions A, 38A, 499-505(2007).
[15]S. Wilmes, G. Zwick, “Effect of Niobium and Vanadium as an Alloying Element in Tool Steels with High Chromium Content”, 6th International Tooling Conference, 267-289(2002).
[16]De Colnet, E. Pirard, J.Tchoufang Tchuindjang, J. Lecomte-Beckers, R. Gfhiri, P. Boeraeve, S. Cescotto, “Quantitative description of MC, M2C, M6C and M7C3 carbides in high speed steel rolls”, MSMF-3 international conference(2001).
[17]C. Zener, Trans. AIME, 175, 15(1949).
[18]S. Matsuda and N. Okumara, Trans. ISIJ, 18, 198(1978).
[19]F.B. Pickering, “Physical Metallurgy and Design of Steel”, Applied Science Publishers, Barking, Essex, UK(1978).
[20]Yuuji Shimatania, Kazuaki Shiozawaa, Takehiro Nakadab, Takashi Yoshimotoc, Liantao Lu, “The effect of the residual stresses generated by surface finishing methods on the very high cycle fatigue behavior of matrix HSS”, International Journal of Fatigue, 33, 122–131(2011).
[21]Berns H, Lueg J, Trojahn W, Wahling R, Wisell H, “The fatigue behavior of conventional and powder metallurgical high speed steels”, Powder Metall Int, 19, 22–26(1987).
[22]Fukaura K, Yokoyama Y, Yokoi D, Tsujii N, Ono K, “Fatigue of cold-work tool steels: effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations”. Met Mat Trans A, 35A, 1289–1300(2004).
[23]Marsoner S, Ebner R, Liebfahrt W, “Influence of inclusion content and residual stresses on SN curves of PM tool steels”, BHM, 148, 176–181(2003).
[24]Meurling F, Melander A, Tidesten M, Westin L, “Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels”, Int J Fatigue, 23, 215–224(2001).
[25]T.H. Yu, J.R. Yang, “Effect of retained austenite on GPM A30 high-speed steel”, Journal of Materials Engineering and Performance, 16(4), 500-507(2007).
[26]Dong Yun, Lin Xiaoping, Xiao Hongshen, “Deep cryogenic treatment of high-speed steel and its mechanism”, Heat Treatment of Metals, 3, 55-59(1998).
[27]Rajendra Kelkar, Philip Nash, Yuntian Zhu, “Understanding the effects of cryogenic treatment on M2 tool steels properties”, August, 57-60(2007).
[28]Simranpreet Singh Gill, Jagdev Singh, Rupinder Singh, Harpreet Singh, “Effect of cryogenic treatment on AISI M2 high speed steel: metallugrical and mechanical characterization”, Journal of Materials Engineering and Performance, 21, 1320-1326(2012).
[29]V. Leskovšeka, M. Kalinb, J. Vizˇintin, “Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS”, 80, 507-518(2006).
[30]R.W.K. Honeycombe, H.K.D.H. Bhadeshia, “Steels: Microstructure and properties(3rd edition), Butterworth Heinemann, Oxford( 2006).
[31]A.K. Sinha, “Physical metallurgy handbook”, McGraw-Hill, New York(2003).
[32]S. Murphy, J.A. Whiteman, “The precipitation of epsilon-carbide in twinned martensite”, Metal Transition, 1, 843-848(1970).
[33]Y. Ohmori, I. Tamura, “Epsilon carbide precipitation during tempering of plain carbon martensite”, Metal Transition, 23A, 2737-2751(1992).
[34]R. Padmanabhan, W.E. Wood, “Precipitation of ε carbide in martensite”, Materials Science and Engineering, 65, 289-297(1984).
[35]M. Blicharski, “Steels”, WNT, Warsaw(2004).
[36]D.E. Kaputkin, “Reversible martensitic transformation, ageing and low-temperature tempering of iron–carbon martensite”, Materials Science and Engineering A, 438–440, 207-211(2006)
[37]A.D.B. Gingell, H.K.D.H. Bhadeshia, D.G. Jones,K.J.A. Mawella, “Carbide precipitation in some secondary hardened steels”, Journal of Materials Science, 32, 4815-4820(1997).
[38]P. Bała, J. Pacyna, J. Krawczyk, “The kinetics of phase transformations during the tempering of HS18-0-1 high-speed steel”, Journal of Achievements in Materials and Manufacturing Engineering, 19(1), 19-25(2006).
[39]P. Bała, J. Pacyna, J. Krawczyk, “The kinetics of phase transformations during the tempering of HS6-5-2 high-speed steel”, Journal of Achievements in Materials and Manufacturing Engineering, 18, 47-50 (2006).
[40]P. Bała, J. Pacyna, “The kinetics of phase transformations during tempering in high-speed steels”, Journal of Achievements in Materials and Manufacturing Engineering, 23(2), 15-18(2007).
[41]P. Bała, J. Pacyna, J. Krawczyk, “The kinetics of phase transformations during the tempering of HS6-5-2 steel”, Archives of Materials science and Engineering, 35(2), 69-76(2009)
[42]P. Bała, J. Pacyna, “The kinetics of phase transformations during continuous heating from as-quenched state in high-speed steel”, Archives of Materials science and Engineering, 37(1), 5-12(2009)
[43]Wang Rong, G. L. Dunlop, “The crystallography of secondary carbide precipitation in high speed steel”, Acta metall, 32(10), 1591-1599(1984).
[44]A. S. Chaus, F. I. Rudnickii, “Diffusion and secondary carbide precipitation in high-speed steels”, Defect and Diffusion Forum, 297-301, 1071-1076(2010).
[45]Bingzhe Lou, B.L. Averbach, “Fracture Toughness and Fatigue Behavior of Matrix II and M-2 High Speed Steels”, Metallurgical Transactions A, 14A, 1889-1898(1983).
[46]陳志郎,”熱處理對SKH-9高速鋼鐖械性質與顯微組織的影響”,台灣大學碩士論文(1986)。[47]V. Leskovšek, B. Podgornik, “Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel”, Materials Science and Engineering A, 531, 119-129(2012).
[48]V. Leskovšek, “Modelling of High-Speed Steels Fracture Toughness”, Materials and Manufacturing Processes, 24(6), 603-609(2009).
[49]Alexander S. Chaus, Maria Domankova, “Precipitation of secondary carbides in M2 high-speed steel with titanium diboride”, Journal of materials engineering and performance, 22(5), 1412-1420(2013).
[50]A.S. Chaus, “Russian Metallurgy”, No. 3, pp. 78, Allerton Press, Inc., NY(1998).