跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/22 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭元霖
研究生(外文):Yuan-Lin Peng
論文名稱:回火熱處理條件對AISI M2高速鋼顯微組織影響之研究
論文名稱(外文):The effect of tempering treatment on the microstructure of AISI M2 high speed steel
指導教授:林東毅林東毅引用關係
指導教授(外文):Dong-Yih Lin
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:高速鋼回火殘留沃斯田鐵碳化物
外文關鍵詞:high speed steeltemperingretained austenitecarbide
相關次數:
  • 被引用被引用:4
  • 點閱點閱:551
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以AISI M2高速鋼作為研究材料,規劃出十種熱處理參數,期望觀察不同回火熱處理條件對顯微組織之影響,試圖利用金相腐蝕方法與影像分析軟體,進行相分率的定量分析,另外再配合FE-SEM和XRD進行微觀組織的觀察,而微觀組織觀察的重點為殘留沃斯田鐵與碳化物的改變。
根據本實驗的研究結果顯示,碳化物的含量會隨著回火溫度的提高漸漸增加,在600℃三次回火後達到最高含量9.08%左右;殘留沃斯田鐵的定量分析結果則相反,在200℃和400℃回火三次後分別有24.73%與20.24%的殘留沃斯田鐵尚未消除,而在600℃第一次回火後殘留沃斯田鐵含量僅剩10.17%,在第三次的回火後則可降至5%以下。借助SEM與XRD的分析一樣可以觀察到相似的趨勢。
而經過熱處理後的碳化物主要以MC與M6C的形式存在,此外發現部分MC碳化物表面有M3C碳化物生成的現象,造成BSE成像上有明顯的顏色差異,而且會有細小且富含重元素(鎢、鉬)的碳化物集中在此成核析出,故可以在BSE模式中清楚看見白色組織,但是其大小介於數十到數百奈米之間已超出EDS的偵測極限,無法準確判定析出之碳化物成分與種類。
This study mainly focused on the microstructural change of AISI M2 high speed steel during different tempering treatments, and the experimental factors contained totally 10 kinds of heat treatment parameters. In order to check the change of microstructure right after each tempering condition, this research attempted to quantify the volume fraction of retained austenite and carbide by the combination of metallography principle and image processing software. Besides, Retained austenite and carbide were the major aim of this study, so the microstructure and phase were particularly analyzed by the means of SEM and XRD.
According to the experimental results of quantification, the carbide content increased gradually with the higher tempering temperature, and it reached the highest value, 9.08%, while it was underwent tempering at 600℃ for 3 times. But the quantificational analysis of retained austenite showed the opposite result to the trend of carbide content, it decreased with the higher tempering temperature. The retained austenite could not be eliminated efficiently even tempered tree times at 200℃ and 400℃, and the amount of retained austenite which remained inside the specimens were 24.73% and 20.24% respectively. But when it was first tempered at 600℃, the retained austenite content could be reduced to 10.17%. After the 3rd tempering treatment at 600℃, the amount of retained austenite could be reduced below 5%. The analysis of SEM and XRD showed a similar result.
There were only 2 types of carbide, MC and M6C, left inside the specimens after heat treatment, in other words, they did not dissolve completely into matrix during austenitizing. In SEM, it discovered that another iron-rich carbide, M3C, formed at the surface of some parts of MC carbide and leading to the obvious difference of color and contrast while under the BSE mode. In addition, there were some tiny carbides, which were rich in heavy element, precipitated at the top of the M3C carbide that mentioned above. So it was easy to find bright carbides on the MC carbide in BSE mode. Because their size ranged from ten to hundreds of nanometer. It already over the detective limit of EDS, so it was difficult to distinguish what type of carbide it was and how was its chemical composition.
謝誌…………………………………………………………………………Ⅰ
總目錄…………………………………………………………………Ⅲ
表目錄………………………………………………………………………Ⅵ
圖目錄………………………………………………………………………Ⅶ
中文摘要……………………………………………………………………1
英文摘要……………………………………………………………………2
第一章 前言………………………………………………………………4
第二章 文獻回顧…………………………………………………………5
2.1 工具鋼之簡介………………………………………………………5
2.2 合金元素對高速鋼的影響…………………………………………6
2.2.1 碳(Carbon) ……………………………………………………8
2.2.2 鉻(Chromium) ………………………………………………10
2.2.3 鉬(Molybdenum) ……………………………………………11
2.2.4 鎢(Tungsten) ………………………………………………12
2.2.5 釩(Vanadium) ………………………………………………13
2.2.6 鈷(Cobalt) …………………………………………………13
2.3 高速鋼中之合金碳化物…………………………………………15
2.3.1高速鋼常見之合金碳化物…………………………………15
2.3.2 AISI M2高速鋼中之主要合金碳化物……………………16
2.4 高速鋼的熱處理方式……………………………………………17
2.4.1 沃斯田鐵化熱處理…………………………………………18
2.4.2 淬火硬化與深冷處理………………………………………19
2.4.3 回火熱處理…………………………………………………20
2.5 回火對鋼材影響之探討…………………………………………22
2.5.1回火熱處理之相變化………………………………………22
2.5.2 麻田散鐵的組織變化………………………………………23
2.5.3 殘留沃斯田鐵的探討………………………………………24
第三章 實驗方法………………………………………………………26
3.1 實驗材料與製備…………………………………………………26
3.2 熱處理參數………………………………………………………26
3.3 定量實驗與分析…………………………………………………28
3.4 SEM&XRD分析…………………………………………………29
第四章 實驗結果與討論…………………………………………………30
4.1 定量分析…………………………………………………………30
4.1.1 碳化物之定量………………………………………………30
4.1.2 殘留沃斯田鐵與碳化物之定量……………………………34
4.1.3 殘留沃斯田鐵枝定量………………………………………40
4.2 XRD之分析………………………………………………………41
4.3 SEM&EDS之分析…………………………………………………44
4.3.1 殘留沃斯田鐵之觀察………………………………………44
4.3.2 碳化物之觀察與分析………………………………………46
4.3.3 基地之EDS分析……………………………………………50
4.4 洛氏硬度試驗……………………………………………………51
第五章 結論………………………………………………………………53
參考文獻……………………………………………………………………55
[1]Christian Rudolf Sohar, “Lifetime Controlling Defects in Tool Steels”, doctoral thesis accepted by Vienna University of Technology(2011).
[2]Alan M. Bayer, Bruce A. Becherer and Teledyne Vasco, “High.Speed Tool Steels”, ASM Handbook, 16, 51-59(1989).
[3]Christian Hojerslev, “Tool Steels”(2001).
[4]Roberts G, Krauss G, Kennedy R, “Tool steels”, 5th edn. ASM, Metals Park, Ohio, USA (1998).
[5]G. Hoyle, “High Speed Steel”, Butterworth & Co. Ltd, Cambridge, England (1988).
[6]George A. Roberts and Robert A. Cary, “Tool Steels” (1980).
[7]游宗翰,”粉末高速鋼GPM A30回火相變態之研究”,台灣大學碩士論文(1999)。
[8]T. Mukherjee, “Physical metallurgy of high-speed steel” (1968).
[9]葉明堂,”SKD-11模具鋼之熱處理”,台灣大學碩士論文(1983)。
[10]Eckhard Pippel, Jorg Woltersdorf, Gottfried Pockl and Gerhard Lichtenegger, “Microstructure and Nanochemistry of Carbide Precipitates in High-Speed Steel S 6-5-2-5”, 43, 41- 55(1999).
[11]N. Sarafianos, “The effect of the Austenitizing heat-treatment variables on the fracture thoughness of high speed steel”, Metallurgical and Materials Transaction A, 28A, 2089-2099(1997).
[12]喻世祿,高速鋼與高速鋼鍛造,國防工業出版社(1989)。
[13]M. M. Serna, E. R. B. Jesus, E. Galego, L. G. Martinez, H. P. S.Correa and J. L. Rossi, “An Overview of the Microstructures Present in High-Speed Steel Carbides Crystallography”, Materials Science Forum, 530-531, 48-52(2006).
[14]Xiaodan Zhang, Wei Liu, Dale Sun and Youguoli, ”The Transformation of Carbides during Austenization and Its Effect on the Wear Resistance of High Speed Steel Rolls”, Metallurgical and Materials Transactions A, 38A, 499-505(2007).
[15]S. Wilmes, G. Zwick, “Effect of Niobium and Vanadium as an Alloying Element in Tool Steels with High Chromium Content”, 6th International Tooling Conference, 267-289(2002).
[16]De Colnet, E. Pirard, J.Tchoufang Tchuindjang, J. Lecomte-Beckers, R. Gfhiri, P. Boeraeve, S. Cescotto, “Quantitative description of MC, M2C, M6C and M7C3 carbides in high speed steel rolls”, MSMF-3 international conference(2001).
[17]C. Zener, Trans. AIME, 175, 15(1949).
[18]S. Matsuda and N. Okumara, Trans. ISIJ, 18, 198(1978).
[19]F.B. Pickering, “Physical Metallurgy and Design of Steel”, Applied Science Publishers, Barking, Essex, UK(1978).
[20]Yuuji Shimatania, Kazuaki Shiozawaa, Takehiro Nakadab, Takashi Yoshimotoc, Liantao Lu, “The effect of the residual stresses generated by surface finishing methods on the very high cycle fatigue behavior of matrix HSS”, International Journal of Fatigue, 33, 122–131(2011).
[21]Berns H, Lueg J, Trojahn W, Wahling R, Wisell H, “The fatigue behavior of conventional and powder metallurgical high speed steels”, Powder Metall Int, 19, 22–26(1987).
[22]Fukaura K, Yokoyama Y, Yokoi D, Tsujii N, Ono K, “Fatigue of cold-work tool steels: effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations”. Met Mat Trans A, 35A, 1289–1300(2004).
[23]Marsoner S, Ebner R, Liebfahrt W, “Influence of inclusion content and residual stresses on SN curves of PM tool steels”, BHM, 148, 176–181(2003).
[24]Meurling F, Melander A, Tidesten M, Westin L, “Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels”, Int J Fatigue, 23, 215–224(2001).
[25]T.H. Yu, J.R. Yang, “Effect of retained austenite on GPM A30 high-speed steel”, Journal of Materials Engineering and Performance, 16(4), 500-507(2007).
[26]Dong Yun, Lin Xiaoping, Xiao Hongshen, “Deep cryogenic treatment of high-speed steel and its mechanism”, Heat Treatment of Metals, 3, 55-59(1998).
[27]Rajendra Kelkar, Philip Nash, Yuntian Zhu, “Understanding the effects of cryogenic treatment on M2 tool steels properties”, August, 57-60(2007).
[28]Simranpreet Singh Gill, Jagdev Singh, Rupinder Singh, Harpreet Singh, “Effect of cryogenic treatment on AISI M2 high speed steel: metallugrical and mechanical characterization”, Journal of Materials Engineering and Performance, 21, 1320-1326(2012).
[29]V. Leskovšeka, M. Kalinb, J. Vizˇintin, “Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS”, 80, 507-518(2006).
[30]R.W.K. Honeycombe, H.K.D.H. Bhadeshia, “Steels: Microstructure and properties(3rd edition), Butterworth Heinemann, Oxford( 2006).
[31]A.K. Sinha, “Physical metallurgy handbook”, McGraw-Hill, New York(2003).
[32]S. Murphy, J.A. Whiteman, “The precipitation of epsilon-carbide in twinned martensite”, Metal Transition, 1, 843-848(1970).
[33]Y. Ohmori, I. Tamura, “Epsilon carbide precipitation during tempering of plain carbon martensite”, Metal Transition, 23A, 2737-2751(1992).
[34]R. Padmanabhan, W.E. Wood, “Precipitation of ε carbide in martensite”, Materials Science and Engineering, 65, 289-297(1984).
[35]M. Blicharski, “Steels”, WNT, Warsaw(2004).
[36]D.E. Kaputkin, “Reversible martensitic transformation, ageing and low-temperature tempering of iron–carbon martensite”, Materials Science and Engineering A, 438–440, 207-211(2006)
[37]A.D.B. Gingell, H.K.D.H. Bhadeshia, D.G. Jones,K.J.A. Mawella, “Carbide precipitation in some secondary hardened steels”, Journal of Materials Science, 32, 4815-4820(1997).
[38]P. Bała, J. Pacyna, J. Krawczyk, “The kinetics of phase transformations during the tempering of HS18-0-1 high-speed steel”, Journal of Achievements in Materials and Manufacturing Engineering, 19(1), 19-25(2006).
[39]P. Bała, J. Pacyna, J. Krawczyk, “The kinetics of phase transformations during the tempering of HS6-5-2 high-speed steel”, Journal of Achievements in Materials and Manufacturing Engineering, 18, 47-50 (2006).
[40]P. Bała, J. Pacyna, “The kinetics of phase transformations during tempering in high-speed steels”, Journal of Achievements in Materials and Manufacturing Engineering, 23(2), 15-18(2007).
[41]P. Bała, J. Pacyna, J. Krawczyk, “The kinetics of phase transformations during the tempering of HS6-5-2 steel”, Archives of Materials science and Engineering, 35(2), 69-76(2009)
[42]P. Bała, J. Pacyna, “The kinetics of phase transformations during continuous heating from as-quenched state in high-speed steel”, Archives of Materials science and Engineering, 37(1), 5-12(2009)
[43]Wang Rong, G. L. Dunlop, “The crystallography of secondary carbide precipitation in high speed steel”, Acta metall, 32(10), 1591-1599(1984).
[44]A. S. Chaus, F. I. Rudnickii, “Diffusion and secondary carbide precipitation in high-speed steels”, Defect and Diffusion Forum, 297-301, 1071-1076(2010).
[45]Bingzhe Lou, B.L. Averbach, “Fracture Toughness and Fatigue Behavior of Matrix II and M-2 High Speed Steels”, Metallurgical Transactions A, 14A, 1889-1898(1983).
[46]陳志郎,”熱處理對SKH-9高速鋼鐖械性質與顯微組織的影響”,台灣大學碩士論文(1986)。
[47]V. Leskovšek, B. Podgornik, “Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel”, Materials Science and Engineering A, 531, 119-129(2012).
[48]V. Leskovšek, “Modelling of High-Speed Steels Fracture Toughness”, Materials and Manufacturing Processes, 24(6), 603-609(2009).
[49]Alexander S. Chaus, Maria Domankova, “Precipitation of secondary carbides in M2 high-speed steel with titanium diboride”, Journal of materials engineering and performance, 22(5), 1412-1420(2013).
[50]A.S. Chaus, “Russian Metallurgy”, No. 3, pp. 78, Allerton Press, Inc., NY(1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊