跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉介永
研究生(外文):Chieh-Yung Yeh
論文名稱:矽奈米柱太陽能電池
論文名稱(外文):Si Nanopillar Solar Cell
指導教授:謝健謝健引用關係
指導教授(外文):Jiann Shieh
口試委員:王志良謝健賴宜生
口試委員(外文):Jyh-Liang WangJiann ShiehYi-Sheng Lai
口試日期:2012-10-11
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:材料科學工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:奈米柱太陽能電池
外文關鍵詞:NanopillarSolar cell
相關次數:
  • 被引用被引用:2
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
奈米柱因具有較高的收集光區域、較低的反射率和較短的少數載子擴散距離,使之在太陽能電池的應用上可提升效能並且降低成本。本論文中,我們以I-line 黃光微影製程製作出直徑小於400 nm 的奈米柱,藉由控制蝕刻時間可製作出各種不同的奈米結構,包括梯形、柱形和鉛筆形,此外,我們利用離子佈植製程來製作淺薄深度的p-n接面,並在奈米柱的表面上鍍製透明導電層ITO 當作上電極。為了比較奈米結構的光電性質,亦準備平面式的元件來當作對照組。結果顯示所有奈米結構元件的光電性質比平面式還來的好,其原因為奈米結構具有降低反射率與增加載子收集效率的優勢,而本研究中1 μm 高的奈米柱元件為光電性質最佳者,其效率可達7.2%,遠優於平面式ITO/Si/Al 太陽能電池效率(2.1%)。
Nanopillars have been suggested to enhance the performance and to reduce the fabrication cost of solar cells by their higher light-trapping area, lower surface reflection and shorter diffusion length for minor carrier. In this thesis, we report a process with I-line lithography to efficiently fabricate nanopillar array with pillar diameter down to less than 400 nm. Various nanostructures including trapezoid, pillar and pencil were obtained by controlling the etching time. In addition, ion implantation was adopted for shallow junction depth, and transparent ITO electrode was used as the conformal top electrode on the surface of nanopillar. To compare the photoelectronic properties of nanostructure, we also prepare a planar device as the reference. The results show that the photoelectronic properties of all the nanostructure are better than that of planar one because of their lower reflectance and enhanced carrier collection efficiency. The efficiency of 1-μm-height nanopillar device was 7.2%, much better than that of planer ITO/Si/Al solar cell (2.1%) in this study.
摘要............................................................................................................. I
Abstract ......................................................................................................II
致謝...........................................................................................................III
目錄.......................................................................................................... IV
表目錄.....................................................................................................VII
圖目錄....................................................................................................VIII
第一章緒論...............................................................................................1
第二章文獻回顧與工作原理..................................................................4
2.1 文獻回顧.......................................................................................4
2.1.1 降低入射光反射率及增加吸收率....................................8
2.1.2 增加光生載子收集效率.....................................................9
2.2 黃光微影製程.............................................................................11
2.2.1 基本原理...........................................................................12
2.2.2 光阻介紹...........................................................................12
2.2.3 微影製程步驟介紹...........................................................13
2.3 太陽能電池工作原理.................................................................15
2.3.1 太陽光譜...........................................................................15
2.3.2 空氣質量(Air Mass, AM).................................................16
2.3.3 太陽能電池基本原理.......................................................17
2.3.4 太陽能電池效率損失因素...............................................18
2.3.5 太陽能電池等效電路.......................................................19
2.3.6 太陽能電池之電性參數...................................................21
第三章實驗步驟....................................................................................23
3.1 實驗流程圖.................................................................................23
3.2 實驗步驟.....................................................................................24
3.3 實驗設備簡介.............................................................................29
3.3.1 水平爐管...........................................................................29
3.3.2 自動化光阻塗佈及顯影系統(TRACK) ..........................31
3.3.3 線上型電子顯微鏡(In-line SEM)....................................32
3.3.4 TCP 9400SE 多晶矽式乾蝕刻機.....................................33
3.3.5 化學清洗蝕刻工作站.......................................................34
3.3.6 中電流離子佈植機...........................................................35
3.3.7 多功能真空濺鍍系統(Sputter) ........................................37
3.3.8 場發射式電子顯微鏡[FE-SEM(6700F)].........................38
3.3.9 UV/VIS/IR光譜儀.............................................................39
3.3.10 太陽能光源模擬器.........................................................40
3.4 NDL使用簡介.............................................................................41
3.4.1 介紹...................................................................................41
3.4.2 如何取得門禁卡...............................................................41
3.4.3 連續製程委託下RUN申請..............................................42
第四章結果與討論................................................................................44
4.1 結構形貌.....................................................................................44
4.1.1 光阻(PR)遮罩...................................................................44
4.1.2 氧化層遮罩.......................................................................47
4.1.3 矽奈米結構.......................................................................49
4.2 反射率量測.................................................................................59
4.3 太陽能電性量測.........................................................................62
第五章結論與未來展望........................................................................72
5.1 結論.............................................................................................72
5.2 未來展望.....................................................................................73
參考文獻...................................................................................................76
1. J. Li, H. Y. Yu, S. M. Wong, G. Zhang, and X. Sun, Appl. Phys. Lett. 95, 033102 (2009).

2. E. Chambon, E. Florentin, T. Torchynska, J. Gonzalez-Hernandez, and Y. Vorobiev, Microelectron. J. 36, 514 (2005).

3. L. Tsakalakos, J. Balch, J. Fronheiser, and B. A. Korevaar, O. Sulima and J. Rand Appl. Phys. Lett. 91, 233117 (2007).

4. J.-Q. Xi, J. K. Kim, and E. F. Schubert, Nano Lett. 5, 1385 (2005).

5. G.-R. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, Appl. Phys. Lett. 89,073108 (2006).

6. T. Tada, A. Hamoudi, T. Kanayama, and K. Koga, Appl. Phys. Lett. 70, 2538 (1997).

7. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Materials Science and Engineering R 69 (2010).

8. G. R. Lin, Y. C. Chang and E. S. Liu, H. C. Kuo and H. S. Lin, Appl. Phys. Lett. 90,181923 (2007).

9. D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, Nano Lett. 11, 2704-2708 (2011).

10. H. P. Yoon, Y. A. Yuwen, C. E. Kendrick, G. D. Barber, and N. J. Podraza, Appl. Phys. Lett. 96, 213503 (2010).

11. W. Lu, and C. M. Lieber, Nature Materials 6, 841-850 (2007)

12. A. Javey, S. Nam, R. S. Friedman, H. Yan, and C. M. Lieber, Nano Lett. 7, 773-777 (2007).

13. J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature 441, 489-493 (2006).

14. D. Wang, and H. Dai, Appl. Phys. A-Mater. 85, 217-225 (2006).

15. A. Javey, ACS Nano 2, 1329-1335 (2008).

16. C. Thelander, C. Rehnstedt, L. E. Froberg, E. Lind, T. Martensson, P. Caroff, T. Lowgren, B. J. Ohlsson, L. Samuelson, and L. E. Wernersson, IEEE T. Electron Dev. 11, 3030-3036 (2008).

17. A. C. Ford, J. C. Ho, Y. L. Chueh, Y. C. Tseng, Z. Y. Fan, J. Guo, J. Bokor, and A. Javey, Nano Lett. 9, 360-365 (2009).

18. Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, Nano Lett. 3, 343-346 (2003).

19. F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, Nano Lett. 5, 2287-2291 (2005).

20. Z. Y. Fan, P. C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. H. Lin, and H. P. Lee, Appl. Phys. Lett. 85, 6128-6130 (2004).

21. Z. Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923-5925 (2004).

22. Z. Y. Fan, and J. G. Lu, Appl. Phys. Lett. 86, 123510 (2005).

23. J. Hahm, and C. M. Lieber, Nano Lett. 4, 51-54 (2004).

24. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, Nano Lett. 4, 1919-1924 (2004).

25. Z. Y. Fan, J. C. Ho, Z. A. Jacobson, H. Razavi, and A. Javey, Proc. Natl. Acad. Sci. U.S.A. 105, 11066-11070 (2008).

26. P. Chen, G. Shen, and C. Zhou, IEEE T. Nanotechnol. 7, 668-682 (2008).

27. C. N. R. Rao, A. Govindaraj, F. L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001).

28. T. H. Pei, S. Thiyagu, and Z. Pei, Appl. Phys. Lett. 99, 153108 (2011).

29. J. Shieh, S. Ravipati, F. H. Ko, and K. Ostrikov, J. Phys. D: Applied Physics 44, 174010 (2011).

30. 國家奈米元件實驗室 http://www.ndl.narl.org.tw/web/index.html

31. R. A. Street, P. Qi, R. Lujan, and and W. S. Wong, Appl. Phys. Lett. 93,163109 (2008).

32. J. R. Maiolo, B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, H. A. Atwater and N. S. Lewis, J. Am. Chem. Soc. 129, 12346-12347 (2007).

33. A. P. Goodey, S. M. Eichfeld, K. K. Lew, J. M. Redwing and T. E. Mallouk, J. Am. Chem. Soc. 129, 12344-12345 (2007).

34. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima and J. Rand, Appl. Phys. Lett. 91, 233117 (2007).

35. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang and C. M. Lieber, Nature 449, 885-889 (2007).

36. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis and H. A. Atwater, Nano Lett. 8, 710-714 (2008).

37. O. Gunawan and S. Guha, Sol. Energy Mater. Sol. Cells 93, 1388-1393 (2009).

38. T. J. Kempa, B. Z. Tian, D. R. Kim, J. S. Hu, X. L. Zheng and C. M. Lieber, Nano Lett., 2008, 8, 3456-3460.

39. K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee and J. Zhu, Small 1, 1062-1067 (2005).

40. E. C. Garnett and P. Yang, Nano Lett. 10, 1082-1087 (2010).

41. T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose and S. Christiansen, Nanotechnology, 19, 295203 (2008).

42. B. M. Kayes, PhD , California Institute of Technology (2009).

43. E. C. Garnett and P. D. Yang, J. Am. Chem. Soc. 130, 9224-9225 (2008).

44. C. Colombo, M. Heiss, M. Gratzel and A. F. I. Morral, Appl. Phys. Lett. 94, 173108 (2009).

45. J. Zhu, Z. F. Yu, S. H. Fan and Y. Cui, Mater. Sci. Eng. R 70, 330 (2010).

46. Y. F. Li, J. H. Zhang and B. Yang, Nano Today 5, 117 (2010).

47. Y. J. Dong, B. Z. Tian, T. J. Kempa and C. M. Lieber, Nano Lett. 9, 2183-2187 (2009).

48. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa and T. Fukui, Appl. Phys. Express 2, 035004 (2009).

49. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, Nano Lett. 9, 148-154 (2009).

50. E. C. Garnett, P. D. Yang, and J. Am. Chem. Soc. 130, 9224-9225 (2008).

51. Z. Y. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, Nat. Mater. 8, 648-653 (2009).

52. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, Nat. Mater. 4, 455-459 (2005).

53. L. E. Greene, M. Law, B. D. Yuhas, and P. D. Yang, J. Phys. Chem. C 111, 18451-18456 (2007).

54. B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).

55. L. A. Kosyachenko, A. I. Savchuk, and E. V. Grushko, Thin Solid Films 517, 2386-2391 (2009).

56. Z. Y. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager and A. Javey, Nat. Mater. 8, 648 (2009).

57. Z. Y. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu and A. Javey, Nano Res. 2, 829 (2009).

58. E. Garnett and P. D. Yang, Nano Lett. 10, 1082 (2010).

59. S. Marsillac, V. Y. Parikh, and A. D. Compaan, Sol. Energ. Mat. Sol. C. 91, 1398-1402 (2007).

60. A. Romeo, G. Khrypunov, S. Galassini, H. Zogg, and A. N. Tiwari, Sol. Energ. Mat. Sol. C. 91, 1388-1391 (2007).

61. G. Beaucarne, F. Duerinckx, I. Kuzma, K. van Nieuwenhuysen, H. J. Kim, and J. Poortmans, Thin Solid Films 533-542 (2006).

62. J. J. Schermer, P. Mulder, G. J. Bauhuis, P. K. Larsen, G. Oomen, and E. Bongers, Prog. Photovoltaics 13, 587-596 (2005).

63. C. J. Bridge, P. Dawson, P. D. Buckle, and M. E. Ozsan, J. Appl. Phys. 88, 6451-6456 (2000).

64. 微影製程簡介 http://science.nchc.org.tw/old_science/j_TeacherLearn/experiment/ex periment_1.pdf

65. 翁敏航,“太陽能電池:原理、元件、材料、製程與檢測技術”,東華書局 (2010)

66. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, Solar Energy Material and Solar Cells, Vol. 90, pp. 3085~3096 (2006).

67. ITO導電玻璃及相關透明導電膜之原理及應用 http://www.51touch.com/Files/TouchDoc/itofilm_tco_theory_app.ication.pdf

68. J. B. DuBow, D. E. Burk, and J. R. Sites, Appl. Phys. Lett. 29, 494 (1976).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊