跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪子育
研究生(外文):Tzu-Yu Hung
論文名稱:應用兩階段隨機規劃模式求解具有不確定性之永續供應鏈網路設計問題
論文名稱(外文):Using a Two-Stage Stochastic Programming Model to Solve the Sustainable Supply Chain Network Design under Uncertainty
指導教授:陳盈彥陳盈彥引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:70
中文關鍵詞:封閉式供應鏈兩階段隨機規劃碳排放量
外文關鍵詞:Closed-Loop Supply ChainTwo-Stage Stochastic ProgrammingCarbon Dioxide Emission
相關次數:
  • 被引用被引用:4
  • 點閱點閱:785
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用兩階段隨機規劃法(Two-stage Stochastic Programming),針對具有不確定性之封閉式永續供應鏈(Closed-Loop Sustainable Supply Chain)網路設計問題建構隨機多目標規劃模型(Stochastic Multi-objective programming model),其考量之特性包括流量配置、潛在逆物流廠址選擇、既有與潛在設施之產能擴充方案選擇與低碳製程技術投資、以及需求與回收數量之不確定性等,以ε-限制法作為本研究多目標求解方法,藉此方法產生柏拉圖最適解(Pareto-optimal solution)集合,權衡供應鏈總成本與二氧化碳排放量之關係。
本研究亦驗證兩階段隨機規劃模型之可行性,並且與確定性模型(Deterministic model)進行比較,其結果顯示考量需求與回收數量不確定性之永續供應鏈設計結果能較穩健(Robust)。透過參數分析,探討不同原物料成本與各回收率對於供應鏈網路設計之影響。例如,當原物料成本低廉時,企業將不願意藉由回收廢棄產品來滿足顧客需求;反之,當原物料成本昂貴時,對於建置逆物流系統之經濟效益愈顯著,同時回收數量的增加亦將導致二氧化碳排放量上升。最後,藉由本研究模式所產生之柏拉圖最佳解前緣(Pareto-optimal front)曲線,協助決策人員依據不同的二氧化碳排放限制,決定逆物流廠址選擇與廠區產能擴充程度,及進行產能擴充時選擇低碳製程技術的參考依據。


In this paper, we develop a two-stage stochastic programming approach for closed-loop sustainable supply chain network design problem under uncertainty, considering logistics flows, capacity expansion and technology investments of existing and potential facilities, and the uncertainty occurred in customer demand and return quantity. A two-stage stochastic programming model, that captures the trade-off between the total cost and the carbon dioxide (CO2) emission, is proposed from the economic and environmental perspective, respectively. In the numerical evaluation and results, the relationship between the total cost and carbon emission will be analyzed by the Pareto-optimal solution set.
Moreover, the applicability of the two-stage stochastic programming model was verified and then compared with the model of certainty. The result shows the sustainable supply chain that considers the uncertainty of demand and return quantity is more robust. The effect of various raw material costs and recovery rates on the design of the supply chain network was discussed through parameter analysis.


摘要..........................................i
Abstract..........................................ii
誌謝..........................................iii
目錄..........................................iv
表目錄..........................................vi
圖目錄..........................................viii
第一章 緒論..........................................1
1.1 研究背景與動機..................................1
1.2 研究目的..........................2
1.3 研究步驟與方法..........................3
第二章 文獻探討..........................5
2.1 永續供應鏈..........................5
2.2 封閉式供應鏈架構..........................8
2.3 隨機規劃 (Stochastic Programming)..........10
2.4 小結..........................13
第三章 永續供應鏈網路設計問題..........................16
3.1 永續供應鏈網路架構描述..........................16
3.2 確定性之永續供應鏈網路設計模型......................17
3.2.1確定性之永續供應鏈網路設計問題定義......................17
3.2.2確定性之永續供應鏈網路設計模式建構......................20
3.3 不確定性之永續供應鏈網路設計模型.....................26
3.3.1不確定性之永續供應鏈網路設計問題定義.....................26
3.3.2不確定性之永續供應鏈網路設計模式建構.....................29
3.4 多目標規劃求解方法.....................36
第四章 產業案例分析.....................39
4.1 產業案例背景說明.....................39
4.1.1 案例相關輸入資訊.....................39
4.1.2 確定性與不確定性之永續供應鏈網路設計案例結果與分析........45
4.2 隨機規劃模式之價值評估.....................48
4.3 參數分析..........................................52
4.3.1原物料成本與回收率變動對經濟效益之影響.....................52
4.3.2原物料單位物料成本變動對經濟面與環境面之影響................54
第五章 結論與建議.....................57
5.1 結論.....................57
5.2 建議.....................57
參考文獻..........................................59
Extended Abstract................................63
Abstract..........................................63
簡歷(CV)..........................................70


1.王中俊 (2012),考量不確定性之正逆向物流整合型永續供應鏈網絡設計─以太陽能產業為例,東海大學工業工程與經營資訊學系,碩士論文。
2.李強 (2002),建置完整供應鏈循環與提升企業競爭新利器的新議題:逆向物流,拓墣產業研究所(TRI)。
3.張益菁 (2007),考量需求不確定之單階多廠產能規劃問題—以TFT-LCD產業為例,國立清華大學工業工程與工程管理學系,碩士論文。
4.許志義 (2003),多目標決策,五南圖書出版股份有限公司。
5.Alcada-Almeida, L., Coutinho-Rodrigues, J., and Current, J. (2009), “A multiobjective modeling approach to locating incinerators”, Socio-Economic Planning Sciences, Vol.43, No.2, pp.111-120.
6.Amin, S. H., and Zhang, G. (2013), “A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return”, Applied Mathematical Modelling, Vol.37, No.6, pp.4165-4176.
7.Azaron, A., Brown, K. N., Tarim, S. A., and Modarres, M. (2008), “A multi-objective stochastic programming approach for supply chain design considering risk”, International Journal of Production Economics, Vol.116, No.1, pp.129-138.
8.Beamon, B. M. (1998), “Supply chain design and analysis:: Models and methods”, International Journal of Production Economics, Vol.55, No.3, pp.281-294.
9.Birge, J. R, and Louveaux, F., 2011, Introduction to stochastic programming, Springer Science+ Business Media.
10.Cardona-Valdes, Y., Alvarez, A., and Ozdemir, D. (2011), “A bi-objective supply chain design problem with uncertainty”, Transportation Research Part C: Emerging Technologies, Vol.19, No.5, pp.821-832.
11.Chaabane, A., Ramudhin, A., and Paquet, M. (2012), “Design of sustainable supply chains under the emission trading scheme”, International Journal of Production Economics, Vol.135, No.1, pp.37-49.
12.Dantzig, G. B. (1955), “Linear programming under uncertainty”, Management Science, Vol.1, No.3-4, pp.197-206.
13.El-Sayed, M., Afia, N., and El-Kharbotly, A. (2010), “A stochastic model for forward–reverse logistics network design under risk”, Computers & Industrial Engineering, Vol.58, No.3, pp.423-431.
14.Fleischman, M., Krikke, H. R., Dekker, R., and Flapper, S. D. (2000), “A characterization of logistics networks for product recovery. Omega”, The International Journal of Management Science, Vol.28, No.6, pp.653-666.
15.Frota Neto, J. Q., Bloemhof-Ruwaard, J. M., van Nunen, J. A. E. E., and van Heck, E. (2008), “Designing and evaluating sustainable logistics networks”, International Journal of Production Economics, Vol.111, No.2, pp.195-208.
16.Guide Jr, V. D. R., and Srivastava, R. (1997), “An evaluation of order release strategies in a remanufacturing environment”, Computers & Operations Research, Vol.24, No.1, pp.37-47.
17.Guillen‐Gosalbez, G., and Grossmann, I. E. (2009), “Optimal design and planning of sustainable chemical supply chains under uncertainty”, AIChE Journal, Vol.55, No.1, pp.99-121.
18.Kannan, G., Sasikumar, P., and Devika, K. (2010), “A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling”, Applied Mathematical Modelling, Vol.34, No.3, pp.655-670.
19.Kara, S. S., and Onut, S. (2010), “A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: The case of paper recycling”, Expert Systems with Applications, Vol.37, No.9, pp.6129-6137.
20.Lee, D. H., Dong, M., and Bian, W. (2010), “The design of sustainable logistics network under uncertainty”, International Journal of Production Economics, Vol.128, No.1, pp.159-166.
21.Listeş, O., and Dekker, R. (2005), “A stochastic approach to a case study for product recovery network design”, European Journal of Operational Research, Vol.160, No.1, pp.268-287.
22.Mohammadi Bidhandi, H., and Mohd Yusuff, R. (2011), “Integrated supply chain planning under uncertainty using an improved stochastic approach”, Applied Mathematical Modelling, Vol.35, No.6, pp.2618-2630.
23.Oyama, S.R. (2011),Lithium-Ion Battery Market Set for Boom Courtesy of Hybrid and Electric Vehicles,http://www.isuppli.com/Semiconductor-Value-Chain/News/Pages/Lithium-Ion-Battery-Market-Set-for-Boom-Courtesy-of-Hybrid-and-Electric-Vehicles.aspx ,引用日期:2013.07/07。
24.Paksoy, T., Bektaş, T., and Ozceylan, E. (2011), “Operational and environmental performance measures in a multi-product closed-loop supply chain”, Transportation Research Part E: Logistics and Transportation Review, Vol.47, No.4, pp.532-546.
25.Pishvaee, M. S., Jolai, F., and Razmi, J. (2009), “A stochastic optimization model for integrated forward/reverse logistics network design”, Journal of Manufacturing Systems, Vol.28, No.4, pp.107-114.
26.Pishvaee, M. S., Rabbani, M., and Torabi, S. A. (2011), “A robust optimization approach to closed-loop supply chain network design under uncertainty”, Applied Mathematical Modelling, Vol.35, No.2, pp.637-649.
27.Ramezani, M., Bashiri, M., and Tavakkoli-Moghaddam, R. (2013), “A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level”, Applied Mathematical Modelling, Vol.37, No.1-2, pp.328-344.
28.Ramudhin, A., Chaabane, A, Kharoune, M, and Paquet, M. (Year) of Conference. “Carbon market sensitive green supply chain network design”. Industrial Engineering and Engineering Management, 2008. IEEM 2008. IEEE International Conference on. IEEE. pp. 1093-1097.
29.Salema, M. I. G., Barbosa-Povoa, A. P., and Novais, A. Q. (2007), “An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty”, European Journal of Operational Research, Vol.179, No.3, pp.1063-1077.
30.Sheu, J. B., Chou, Y. H., and Hu, C. C. (2005), “An integrated logistics operational model for green-supply chain management”, Transportation Research Part E: Logistics and Transportation Review, Vol.41, No.4, pp.287-313.
31.Srivastava, S. K. (2007), “Green supply-chain management: A state-of-the-art literature review”, International Journal of Management Reviews, Vol.9, No.1, pp.53-80.
32.Srivastava, S. K. (2008), “Network design for reverse logistics”, Omega, Vol.36, No.4, pp.535-548.
33.Subramanian, R., Talbot, B., and Gupta, S. (2010), “An Approach to Integrating Environmental Considerations Within Managerial Decision‐Making”, Journal of Industrial Ecology, Vol.14, No.3, pp.378-398.
34.Uribe, A. M., Cochran, J. K., and Shunk, D. L. (2003), “Two-stage simulation optimization for agile manufacturing capacity planning”, International Journal of Production Research, Vol.41, No.6, pp.1181-1197.
35.Wang, F., Lai, X., and Shi, N. (2011), “A multi-objective optimization for green supply chain network design”, Decision Support Systems, Vol.51, No.2, pp.262-269.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top