跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瀚德
研究生(外文):Han-De Huang
論文名稱:食品業供應鏈風險分析
論文名稱(外文):Supply Chain Risk Analysis: An Application in the Food Industry
指導教授:張洝源張洝源引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:77
中文關鍵詞:風險評估SEM供應鏈風險PLSAMOS
外文關鍵詞:Risk AssessmentSEMPLSAMOSSupply Chain Risk
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1330
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於世界整體環境不斷變遷,市場不斷的改變,企業為了永續經營再創利益,唯有提升自我能力以外,如何迅速因應風險所帶來的危機,更是影響企業存活的重點。而企業必須研議,從原物料、生產製造及配銷至最後客戶端流程間可能引發的風險,進而採取必要之緊急應變措施,降低企業損害,即為本研究之主要議題。
我國食品業之發展面臨高原物料成本、國外進口貨物所課徵之高進口關稅、高勞工薪資成本、環保及土地成本亦相較鄰國高出許多,加上研究發展資金不足,市場資訊體系不完全,產業升級緩慢。另外,我國普遍用人薪資偏低,故無法吸引願意從事食品業的人才及勞工。反觀國外食品,其進口價格不僅低廉且具有特色,直接影響我國本土食品業;加上近年來金融風暴、歐債危機等連鎖反應影響世界經濟,造成供應鏈問題不斷產生,對於食品業帶來非常大的衝擊。
本研究首先蒐集相關文獻,進行探討企業所面臨的風險因素,再與食品業者進行訪問,建構可能造成食品業供應鏈中斷之風險因素,製作問卷構面因素及問題內容後,針對食品業者進行問卷調查,以結構方程模式(Structural Equation Modeling, SEM)之分析方法,評估對於食品業整體供應鏈風險危害之影響。首先,本研究使用SEM法之AMOS資料統計工具,加以分析,其結果顯示由於樣本數未達其AMOS所需標準,因此SEM實證顯著性不佳,其原因係因為本研究以食品業為分析主體,受調查回收之樣本數較少之限制,本研究再以偏最小平方法(Partial Least Squares, PLS)進一步作為主要的研究方法,許多研究已證實PLS不必與SEM一樣須要大量樣本數,而以少量樣本數即可得到顯著性之結果,故作為本研究結論。
依PLS研究結果顯示,從路徑觀察「外部供應鏈風險」、「內部組織供應鏈風險」、「供應網路」對於「供應鏈風險衝擊(企業衝擊) 」有顯著直接之負面影響。而「外部供應鏈風險」對於「內部組織供應鏈風險」有顯著負面影響。從路徑強度觀察「內部供應鏈風險」之直接效果為影響最大,因此食品業之主管可針對其內部風險之「人為災害」及「產品」、「資訊」方面進行優先防範。
本研究分析之結果,能提供食品業者判別整體供應鏈風險之影響關係落在哪一個類型上,也能夠清楚了解食品業界所面臨的供應鏈風險類型的重要因素,此結論可提供相關食品企業業主管之參考,針對風險之因素能更加有效防範並採取因應對策。


Due to constant changes of the overall global environment and markets, in order for enterprises to achieve business continuity and create greater interest, in addition to the enhancement of entrepreneurial capability, how to rapidly respond to a crisis arising from risks remains the key to survival. Hence, enterprises must explore risks that likely arise as a result of raw materials, manufacture, distribution, and intermediate processes at the client end.

Taiwan’s food industry development is faced with high raw material costs, high import tariffs levied on imported goods, high labor wage costs, and higher costs for environmental protection and land compared to neighboring countries. Additionally, due to inadequate funding for research and development and incomplete market information systems, industrial upgrade has been slow. Moreover, Taiwan is unable to attract talents and laborers to engage in the food industry due to the relatively low labor wages. On the contrary, foreign foods with low import prices and unique characteristics have a direct impact on our country’s local food industry. Furthermore, the financial crisis, Europe’s debt crisis, and other chain reactions that have impacted the global economy and have constantly given rise to supply chain problems have had a tremendous impact on the food industry.

The relevant literatures were first collected to explore the risks faced by the enterprises. Interviews with the food operators were then conducted to construct risk factors that likely cause disruptions of the food industry’s supply chain. After the questionnaire dimension factors and question contents were produced, the questionnaire survey was conducted on the food operators. The Structural Equation Modeling (SEM) analysis method was adopted to evaluate the impact on the food industry’s overall supply chain risk hazards. First, the AMOS data statistical tool of SEM was used for the analysis. The results show that as the number of samples failed to reach the required standard of AMOS, the SEM’s empirical significance was poor. The reason for this outcome is that the food industry was adopted in this study as the body for analysis. Due to the limitation of the small number of recovered survey samples, the Partial Least Squares (PLS) was further adopted as the research method. A number of studies have confirmed that, unlike SEM, PLS does not require a large number of sample that only a small number of samples is required to obtain significant results, which served as the conclusions in this study.

According to the PLS results, the path observation shows that “external supply chain risks,” “internal organization supply chain risks,” and “supply network” have a significantly and directly negative impact on “supply chain risk impact” and “enterprise impact.” On the other hand, “external supply chain risks” have a significantly negative impact on “internal organization supply chain risks.” Based on the path intensity observed, the direct impact of the “internal supply chain risks” causes the greatest impact. Thus, food industry executives may take precautionary measures from the aspects of “man-made disasters,” “products,” and “information.”

The analysis results in this study can help food industry operators to determine which type of influence and relationship the overall supply chain risks fall on. They will also be able to clearly gain an insight into the important factors contributing to the supply chain risk types the food industry is faced with. The conclusions shall serve as a reference for food business executives concerned in order to adopt more effective prevention and response strategies targeting the risk factors.


摘要..............................i
Abstract..............................ii
誌謝..............................iii
目錄..............................iv
表目錄..............................vi
圖目錄..............................viii
第一章 緒論..............................1
1.1 研究背景..............................1
1.2 研究動機..............................1
1.3 研究目的..............................2
1.4 研究流程..............................2
第二章 文獻探討..............................4
2.1 風險的定義及概要..............................4
2.2 供應鏈概念..............................6
2.3 供應鏈風險中斷類型..............................6
2.4 影響供應鏈著名事件..............................12
2.4.1 案例背景(911恐怖攻擊)...........................12
2.4.2 案例背景(日本311地震)...........................12
2.4.3 案例背景(塑化劑風暴)...........................12
2.4.4 案例背景(泰國水災)...........................13
2.5 問卷構面因素選擇...........................13
2.5.1 外部供應鏈風險因素...........................13
2.5.2 內部供應鏈風險因素...........................15
2.5.3 供應網路風險因素...........................15
2.5.4 供應鏈風險衝擊因素...........................17
2.6 結構方程模式(STRUCTURAL EQUATION MODELING, SEM).....17
第三章 研究方法...........................19
3.1 假設研究...........................19
3.2 問卷設計...........................20
3.2.1 問卷預試...........................20
3.2.2 問卷預試信度檢定...........................20
3.2.3 問卷預試基本資料分析...........................23
3.3 研究方法及工具...........................24
3.3.1 結構方程模式...........................24
3.3.2 分析樣本數大小...........................25
3.3.3 分析解釋與模式...........................25
3.3.4 AMOS SEM適配度指標 (Goodness of Fit Index, GFI)...........................28
3.3.5 偏最小平方法 (Partial Least Squares, PLS).......29
3.3.6 統計分析解釋...........................30
第四章 資料分析...........................31
4.1 信度分析...........................31
4.2 正式問卷效度分析...........................34
4.3 基本資料敘述統計...........................37
4.4 AMOS SEM潛在變項路徑分析..........................38
4.5 初始模式與修正後之適配指標比較....................49
4.6 AMOS研究徑路之分析...........................50
4.7 PLS分析刪除信度及效度之差異.......................51
4.8 PLS結構更新之資料分析...........................53
4.8.1 相關係數分析...........................55
4.8.2 結構模型路徑中介分析...........................56
4.9 PLS與AMOS比較...........................57
4.9.1 PLS與AMOS實際差別...........................57
第五章 結論與建議...........................58
5.1 研究結論...........................58
5.2 研究限制...........................58
5.3 研究建議...........................59
5.3.1 未來研究與建議...........................59
5.3.2 食品業之建議...........................59
參考文獻...........................60
附錄一...........................65
附錄二...........................67
附錄三...........................68
英文論文大綱...........................72
簡歷...........................77


1.王敏伶 (2011),兄弟象球迷對彭政閔代言商品購買意願模式之研究-結構方程模式(SEM)驗證,臺北市立教育大學體育學研究所,碩士論文。
2.王彥之 (2009),知識障礙克服機制與ERP系統建置成效之研究,銘傳大學資訊管理學系研究所,碩士論文。
3.王保進 (2006),視窗版SPSS與行為科學研究,台北市:心理。
4.江怡慧 (2009),影響綠色科技產品之消費者購買意願關鍵因素研究,國立高雄第一科技大學企業管理研究所,碩士論文。
5.何秀芳 (2000),再論月營收公告之資訊內涵,國立臺灣大學會計學研究所,碩士論文。
6.李惠茹 (2012),EMS採購人員危機意識與危機處理之研究─以和碩蘇州廠區為例,世新大學傳播管理學研究所,碩士論文。
7.邱皓政 (2005),多變量分析─LISREL的理論、技術與應用,台北:雙葉書郎。
8.吳明隆 (2009),結構方程模式─AMOS的操作與應用,第二版,台北:五南。
9.周子敬 (2006),結構方程模式(SEM)-精通LISREL,台北市:全華。
10.姜羽庭 (2008),國家稅務機關雇佣關係之探討:心理契約觀點,真理大學管理科學研究所,碩士論文。
11.范佐諺 (2010),影響藥物辨識系統持續使用之關鍵因素,嘉南藥理科技大學醫療資訊管理研究所,碩士論文。
12.翁振銘 (2009),行動電話使用者採用行動即時通訊服務之研究,東吳大學資訊管理學研究所,碩士論文。
13.陳村亙 (2009),部落客知識分享行為之研究,朝陽科技大學資訊管理系,碩士論文。
14.陳玥樺 (2012),應用 Fuzzy DEA 建立考慮風險之供應商評選模式,國立高雄應用科技大學企業管理研究所,碩士論文。
15.張春雄、林顯達、黃新宗、劉美芳 (2004),風險管理,吉田出版社,台中。
16.康峯瑞 (2006) ,產險業務員作業風險知覺之研究以本國產險公司為例,銘傳大學風險管理與保險學研究所,碩士論文。
17.許耀鴻 (2012) ,國內旅遊風險管理之研究–以國家公園風景區為例,國防大學管理學院運籌管理研究所,碩士論文。
18.黃俊英 (2004),多變量分析,台北:華泰
19.黃菱煖 (2013),塑化劑風暴後,消費者對統一企業飲料購買意圖之研究,中興大學企業管理學研究所,碩士論文。
20.葉儒杰 (2012),從311日本海嘯到達台灣看我國之應變,國立臺灣海洋大學海洋環境資訊研究所,碩士論文。
21.鄒漢民 (2008),價值性認知對於IS滿意度影響之研究,國立中央大學企業管理研究所,碩士論文。
22.鄧家駒 (2005),風險管理,台北:華泰文化,第四版。
23.蕭建和 (2004),鐵路立體化工程施工災害及風險管理之研究,中華大學營建管理研究所碩士論文。
24.蕭福仁 (2009),遠距醫療新科技接受模式之研究,以台澎金馬地區為例,立德大學大學科技管理研究所,碩士論文。
25.薛飛 (2009) ,從危機中勝出,MIT的供應鏈風險管理學,遠流出版社,台北。
26.顏啟芳 (2011),內在及外在動機對行動英語學習持續使用意願之影響,國立台北科技大學技術及職業教育研究所,博士論文。
27.Bagozzi, R. P., and Yi, Y. (1988), “On the evaluation of structural equation models”, Journal of Academy of Marketing Science, Vol.16, No.1, pp. 74-94.
28.Beamon, B. M. (1998), “Supply chain design & analysis: models & methods”, International Journal of Production Economics, Vol. 55, No.3, pp. 281-294.
29.Bentler, P. M., and Chou, C. P. (1987), “Practical issues in structural modeling”, Sociological Methods and Research, Vol.16, No.1, pp.78-117.
30.Blackhurst, J. V., Scheibe, K. P., and Johnson, D. J. (2008), “Supplier risk assessment and monitoring for the automotive industry”, International Journal of Physical Distribution & Logistics Management, Vol.38, No.2, pp.143-165.
31.Bollen, K. A., and Stine, R. A. (1992), “Bootstrapping goodness of fit measures in structural equation models”, Sociological Methods and Research, Vol.21, No.2, pp.205-229.
32.Breckler, S. J. (1990), “Applications of covariance structure modeling in psychology: Cause for concern? ”, Psychological Bulletin, Vol.107, No.2, pp.260-273.
33.Buzacott, J. A. (1971), “The role of inventory in flow.line production systems”, International Journal of Production Research, Vol.9, No.4, pp.425-436.
34.Chopra, S. and Sodhi, M.S. (2004), “Managing risk to avoid supply-chain breakdown”, MIT SloanManagement Review, Vol. 46 No. 1, pp. 53-61.
35.Chin, W. W. (1998), The Partial Least Squares Approach to Structural Equation Modeling, Mahwah, NJ: Lawrence Erlbaum Associates, Inc., pp. 295-336.
36.Christopher, M. (1992), Logistics and Supply Chain Management: Strategies for Reducing Costs and Improving Services, Pitman, London.
37.Christopher, M. and Peck, H. (2004), “Building the resilient chain”, International Journal of Logistics Management, Vol. 15, No. 2, pp.1-14.
38.Christopher, M., and Hau L. L. (2004), “Mitigating supply chain risk through improved confidence”, International Journal of Physical Distribution and Logistics Management, Vol. 34, No. 5, pp. 388-396
39.Olson, D. L., and Wu, D. D. (2010), “A review of enterprise risk management in supply chain”, Kybernetes, Vol. 39 No. 5, pp. 694-706
40.Dencnberg, H. S. (1964), Risk and Insurance, pp.4.
41.Diabat, A., Govindan, K., and Panicker, V. (2011), “Supply chain risk management and its mitigation in a food industry”, International Journal of Production Research, Vol.50, No.11, pp.3039-3050.
42.Eilers, R. D., Hoffman, G. W., Kline, C. A., Melone, J. J., & Snider, H. W. (1964), Risk and insurance. Englewood Cliffs, NJ: Prentice-Hall.
43.Ellram, L. M. and Zsidisin, G. Z. (2003), “An agency theory investigation od supply risk management”, Journal of Supply Chain Management, Vol.39,No.3, pp. 15-27.
44.Diamantopoulous, A., and Siguaw, A. A. (2000), Introducing LISREL: A guide for the uninitiated. New Delhi: Sage
45.Faisal, M. N., Banwet, D. K., Shankar, R. (2007), “Information risks management in supply chains: an assessment and mitigation framework”, Journal of Enterprise Information Management, Vol.20, No.6, pp.677-699.
46.Fornell, C., and Larcker, D. F. (1981), “Evaluating structural equation models with unobservable variables and measurement error”, Journal of Marketing Research, Vol.18, No.1, pp. 39-50.
47.Fornell, C. & Larcker, D. (1981), “Structural equation models with unobservable variables and measurement errors”, Journal of Marketing Research, Vol.18, No.2, pp.39-50.
48.Ganeshan, R., and Harrison, T. P. (1995), An introduction to supply chain management, http://silmaril.smeal.psu.edu/misc/supply_chain_ intro.html.
49.Goh, M., Lim, J. Y. S., and Meng, F. (2007), “A stochastic model for risk management in global supply chain networks”, European Journal of Operational Research, Vol.182, No.1, pp.164-173.
50.Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., and Black, W. C. (1998). Multivariate Data Analysis, 5th Edition, Upper Saddle River, NJ: Prentice-Hall.
51.Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V.M., and Tuominen, M. (2004), “Risk management processes in supplier networks”, International Journal of Production Economics, Vol.90, No.1, pp.47-58.
52.Harland, C., Brenchley, R. and Walker, H., (2003), “Risk in supply networks”, Journal of Purchasing & Supply Management, Vol.9, No.2, pp.51-62
53.Joreskog, K. G., and Sorbom, D. (1996), LISREL 8: Structural Equation Modeling with the Simplis Command Language, Hove and London: Scientific Software International.
54.Juttner et al., U., Peck, H., & Christopher, M. (2003), “Supply chain risk management: outlining an agenda for future research”, International Journal of Logistics: Research and Applications, Vol.6, No.4, pp.197-210.
55.Kalakota, R. and Robinson, M. (1999), “E-Business Roadmap for Success”, An imprint of Addison Wesley Longman, Inc.
56.Kersten, W., Boger, M., Hohrath, P., and Spath, H. (2006), “Supply chain risk management: development of a theoretical and empirical framework”, Managing Risks in Supply Chains, Vol.5, No.1, pp.3-17.
57.Kleinbaum, D. G., & Kupper, L. L. (1982), Epidemiologic research: principles and quantitative methods. Wiley. com.
58.Kleindorfer, P. R. and Saad, G.H. (2005), “Managing disruption risks in supply chains”, Production and Operations Management, Vol. 14 No. 1, pp. 53-68.
59.Kline, R. B. (1998), Principle and Practice of Structural Equation Modeling, New York: Guilford Press.
60.Levary, R. R., (2007), “Ranking foreign suppliers based on supply risk”, Supply Chain Management: An International Journal, Vol.12, No.6, pp.392-394.
61.Loehlin, J. C. (1992), Genes and Environment in Personality Development. Sage Publications, Inc.
62.Lin, Y., and Zhou, L. (2011), “The impacts of product design changes on supply chain risk: a case study”, International Journal of Physical Distribution and Logistics Management, Vol.42, No.2, pp.162-186.
63.Manuj, I., and Mentzer, J. (2008), “Global supply chain risk management”, Journal of Business Logistics, Vol.29, No.1, pp.133-155.
64.Mitchell, V. W., (1995), “Organisational risk perception and reduction: a literature review”, British Journal of Management, Vol.6, No.2, pp.115-133.
65.Moeinzadeh, P. and Hajfathaliha, A. (2010), “A combined fuzzy decision making approach to supply chain risk assessment”, International Journal of Human and Social Sciences, Vol.5, No.13, pp.859-875.
66.Mueller, R. O. (1997), “Structural equation modeling: Back to basics ”, Structural Equation Modeling, Vol. 4, No. 4, pp.353-369.
67.Nunnally, J. C. (2010), Psychometric Theory 3E. Tata McGraw-Hill Education.
68.Raine-Eudy, R. (2000), “Using structural equation modeling to test for different reliability and validity: An empirical demonstration”. Structural Equation modeling, Vol.7, No.1, pp.124-141.
69.Ram, G., Terry, P. H. (2001), “An introduction to supply chain management”, Supply Chain Management, Vol. 1, pp.1-7.
70.Rice, J. B. (2003), “Supply chain response to terrorism: creating resilient and secure supply chains”, MIT Center for Transportation and Logistics, pp.30-40.
71.Rigdon, E. (2005), SEM FAQ, http://www.gsu.edu/~mkteer/sem.html.
72.Tang, C. S. (2006), “Perspectives in supply chain risk management”, International Journal of Production Economics, Vol.103, No.2, pp.451-488.
73.Tang, C. X. H., Lau, H. C. W. and Ho, G. T. S. (2008), “A conceptual fuzzy-genetic algorithm framework for assessing the potential risks in supply chain management”, International Journal of Risk Assessment & Management, Vol. 10, No. 3, pp. 263-71.
74.Towill, D. and Christopher, M. (2002), “The supply chain strategy conundrum: to be lean or agile or to be lean and agile?”, International Journal of Logistics, Vol.5, No.3, pp. 299-309.
75.Velicer, W. F., and Fava, J. L. (1998), “Effects of variable and subject sampling on factor pattern recovery”. Psychological Methods, Vol.3, No.2, pp.231-251.
76.Wagner, S. M., & Bode, C. (2008), “An empirical examination of supply chain performance along several dimensions of risk”. Journal of Business Logistics, Vol.29, No.1, pp.307-325.
77.Wong, C.Y. and Hvolby, H. H. (2007), “Coordinated responsiveness for volatile toy supply chains”, Production Planning and Control, Vol.18, No.5, pp.407-419.
78.Wu, T., Blackhurst, J., and Chidambaram, V. (2006), “A model for inbound supply risk analysis”, Computers in Industry, Vol.57, No.4, pp.350-365.
79.Yates, J. F. (1990), Judgment and Decision Making, Prentice-Hall, Inc.
80.Zsidisin, G.A.(2003) , “A grounded definition of supply risk” , The Journal of Supply Management, Vol.9,No.1, pp.217-224.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top