(3.238.130.97) 您好!臺灣時間:2021/05/14 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃群凱
研究生(外文):Cyun-Kai Huang
論文名稱:非晶態之銦鎵摻雜氧化鋅薄膜電晶體光敏特性之研究
論文名稱(外文):A Study on Photosensitive Characteristics of a-IGZO Thin Film Transistors
指導教授:姬梁文姬梁文引用關係
指導教授(外文):Liang-Wen Ji
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:83
中文關鍵詞:氧化銦鎵鋅薄膜電晶體非晶半導體電特性射頻磁控系統
外文關鍵詞:TFTAmorphous semiconductorsElectrical characteristicsrf-sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非晶的氧化物與透明寬能隙的氧化物半導體元件有成為新世代元件的潛力。本論文主要研究非晶型態的氧化銦鎵鋅電晶體(TFT)之光電元件製備與特性分析。其主要研究可分兩個部分:
第一部分(材料分析),研究非晶氧化銦鎵鋅薄膜光學特性與電特性。利用射頻磁控濺鍍系統沉積主動層,研究薄膜濺鍍時在不同氧氣比例,薄膜完成後不同的退火環境與退火溫度下改善薄膜特性。原子力顯微鏡(AFM),場發射掃描式顯微鏡(FE-SEM),UV光譜分析儀來觀察薄膜表面及光學結構,其實驗結果氧化銦鎵鋅薄膜在本實驗中皆為非晶狀態,而在不同氧氣比例下可改變薄膜粗糙度,而在氧氣環境下退火300℃得到為大均方根粗糙度(1.172nm)。
第二部分(電晶體之特性)利用射頻磁控濺鍍沉積最佳參數氧化銦鎵鋅薄膜於玻璃基板當通道層製作於下閘極結構電晶體。並使分別使用二氧化矽和高介電常數二氧化鉿作為介電層。在將元件進行輸出和轉移特性量測與分析,結果發現二氧化鉿做為閘極介電層有較低漏電流和低的驅動電壓,最後研究電晶體在光照射下的電特性,研究發現光電子的產生造成電晶體漏電流變大和起始電壓負偏移。為了改善其穩定電特性製作上閘結構,結果相對的光照下漏電流和起始電壓都有明顯改善。


Wide-band-gap Transparent and amorphous oxide semiconductor are promising functional component for next-generation devices. this dissertation describes the fabrication characterization of amorphous indium gallium zinc oxide transistor (TFT) devices with. In this thesis, This main is be divided into two parts.
First(Material Analysis) The active layer thin film deposition by RF magnetron sputter, thin film sputtering study in a different proportion of oxygen when the film is complete different annealing temperature annealing environment and improve the film properties. Atomic force microscopy (AFM), field emission scanning electron microscope (FE-SEM), UV spectrum analyzer to view the film surface and the optical structure, In this experiment gallium zinc oxide thin films are amorphous state and at different lower proportion of oxygen can change the film roughness, Annealed temperature 300 ℃ in an oxygen atmosphere have a large RMS(1.172nm).
Second(Transistor Characteristics) Deposited by RF magnetron sputtering optimal parameters indium gallium zinc oxide thin film on a glass substrate, The channel layer is produced bottom gate structure transistor. In this study we respectively use silicon oxide and high dielectric constant material hafnium oxide as a dielectric layer. The element in the output and transfer characteristics of the measurement and analysis, The results showed that as the hafnium dioxide gate dielectric layer has a low leakage current and low driving voltage, he final study under light irradiation transistor electrical characteristics, the study found photoelectron generation resulting transistor leakage current Japanese starting voltage negative shift. In order to improve the stability of the electrical characteristics productions top gate structure, That under illumination the results relative to the leakage current and the starting voltage has improved significantly.


中文摘要 ........................................................................................... i
英文摘要 ........................................................................................... ii
誌謝 ........................................................................................... iii
目錄 ........................................................................................... v

表目錄 ........................................................................................... vii

圖目錄 ........................................................................................... viii

第一章 緒論................................................................................... 1
1.1 電晶體發展過程.............................................................................. 1
1.2 研究動機與目的............................................................... 1
1.3 高介電係數材料特性……………………………………………... 1
第二章 理論基礎.......................................................................................... 3
2.1 薄膜材料特性.................................................................................. 3
2.1.1 氧化銦鎵鋅結構與特性................................................................... 3
2.1.2 氧化銦錫結構與特性....................................................................... 4
2.1.3 二氧化矽結構與特性....................................................................... 4
2.1.4 二氧化鉿結構與特性....................................................................... 4
2.2 薄膜電晶體之工作原理................................................................... 4
2.3 場校電晶體之重要參數................................................................... 6
2.3.1 臨限電壓(threshold voltage)............................................................ 6
2.3.2 場效移動率(Field-effect mobility)................................................... 6
2.3.3 元件開關比(on/off current ratio)………………………………….. 6
2.3.4 次臨界斜率(Subthreshold Swing)………………………………… 7
第三章 研究內容與方法............................................................................... 14
3.1 實驗架構........................................................................................... 14
3.2 製作氧化銦鎵鋅薄膜及氧化銦鎵鋅薄膜材料之分析................... 15
3.2.1 氧化銦鎵鋅薄膜製作方法............................................................... 15
3.2.2 氧化銦鎵鋅之分析........................................................................... 15
3.3 製作氧化銦鎵鋅場效薄膜電晶體................................................... 16
3.3.1 黃光微影製程................................................................................... 16
3.3.2 製作下閘極氧化銦鎵鋅場效薄膜電晶........................................... 16
3.3.3 製作上閘極氧化銦鎵鋅場效薄膜電晶體....................................... 17
第四章 結果與討論....................................................................................... 25
4.1 氧化銦鎵鋅薄膜電晶體之電特性分析........................................... 25
4.1.1 氧化銦鎵鋅表面型態....................................................................... 26
4.1.2 穿透與能隙....................................................................................... 26
4.2 改變介電層材料與氧化銦鎵鋅電晶體結構................................... 27
4.2.1 下閘極氧化銦鎵鋅薄膜電晶體不同氧壓....................................... 27
4.2.2 下閘極氧化銦鎵鋅薄膜電晶體不同通道長寬比........................... 28
4.2.3 下閘極氧化銦鎵鋅薄膜電晶體使用SiO2與HfO2介電層比....... 29
4.2.4 下閘極氧化銦鎵鋅薄膜電晶體退火於不同環境........................... 29
4.2.5 下閘極氧化銦鎵鋅薄膜電晶體退火於不同溫度........................... 30
4.2.6 上閘極氧化銦鎵鋅薄膜電晶體....................................................... 30
4.3 照光環境下對氧化銦鎵鋅薄膜電晶體特性影響........................... 31
4.3.1 光線照射時間對氧化銦鎵鋅薄膜電晶體影響............................... 31
4.3.2 不同波長光線照射氧化銦鎵鋅薄膜電晶體…………………….. 32
第五章 結論與未來展望............................................................................... 73
5.1 結論……………………………………………………………….. 73
5.2 未來展望………………………………………………………….. 74
參考文獻 .......................................................................................................... 75
英文論文大鋼 …………………………………………………………………….. 78
簡歷 ……………………………………………………………............... 83


[1]Hitoshi Aoki, et al. 1996, “Dynamic Characterization of a-Si TFT-LCD Pixels”, IEEE Transactions On Eelectron Devices, Vol. 43, No. 1, January.
[2]Sang-Hoon Jung , et al.2004, “A New Voltage-Modulated AMOLED Pixel
Design Compensating for Threshold Voltage Variation in Poly-Si TFTs”, IEEE ELECTRON DEVICE LETTERS, VOL. 25, NO. 10, OCTOBER.
[3]Yong-Hea Kim, et al, 2004, “High-Performance Ultralow-Temperature Polycrystalline Silicon TFT Using Sequential Lateral Solidification”, IEEE ELECTRON DEVICE LETTERS, VOL. 25, NO. 8, AUGUST.
[4]Kapil Sakariya, et al. 2004, “Stability Analysis of Current Programmed a-Si:H
AMOLED Pixel Circuits”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 12, DECEMBER.
[5]G. Lavareda et al. 2004, “Properties of a-Si:H TFTs using silicon carbonitride as dielectric”, Journal of Non-Crystalline Solids 338–340 (2004) 797–801.
[6]GD Wilk, et al. 2001, “High-k gate dielectrics: Current status and materials properties consideration” Journal of Applied Physics, Vol. 89, pp. 5243.
[7]Seong-Ho Kim, et al. 2003, “An Analytical Mode for Gate Induced Drain Leakage Current in a Buried-Channel PMOSFET ” Journal of the Korean Physical, Society Vol. 43, pp. 868.
[8]Young-Je Cho, et al. 2009, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors”, Thin Solid Films 517 (2009) 4115–4118.
[9]Jae Sang Lee, et al. 2010, “High-Performance a-IGZO TFT With ZrO2 Gate
Dielectric Fabricated at Room Temperature”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 3, MARCH.
[10]Chien-Hung Wu, et al. 2012, “Characteristics of IGZO TFT Prepared by Atmospheric Pressure Plasma Jet Using PE-ALD Al2O3 Gate Dielectric”, IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 4, APRIL.
[11]C. J. Chiu, W et al. 2011, “A Deep UV Sensitive Ta2O5/IGZO TFT”, IEEE SENSORS JOURNAL, VOL. 11, NO. 11, NOVEMBER.
[12]Hideo Hosono, 2006, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application” , Journal of Non-Crystalline Solids, Vol. 352, pp. 851-858 .
[13]C.H. Lee, C.S. Huang, Materials Science and Engineering B22, 233-240(1994).
[14]Z.B. Zhou, R.Q. Cui, Q.J. Pang, Y.D. Wang, F.Y. Meng, T.T. Sun, Z.M.Ding, X.B. Yu, Applied Surface science 172, 254-252(2001).
[15]D. Shin, R. Arroyave, and Z-K Liu, 2008, “Thermodynamic modeling of the Hf-Si-O system”, Computer coupling of phase diagrams and thermochemistry, vol. 0, 1(2008).
[16]J-P Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, and J. W. Seo, J.Appl.Phys., vol.100, 051610(2006).
[17]Ye Wang, et al. 2011, “Influence of Channel Layer Thickness on the Electrical Performances of Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 2, FEBRUARY
[18]Edward Namkyu Cho, Jung Han Kang, Ilgu Yun, 2011, “Effects of channel thickness variation on bias stress instability of InGaZnO thin-film transistors”, Microelectronics Reliability 51 (2011) 1792–1795.
[19]Chur-Shyang Fuh, et al. 2011, “Role of environmental and annealing conditions on the passivation-free in-Ga–Zn–O TFT”, Thin Solid Films 520 (2011) 1489–1494.
[20]Jeung Sun Ahn, et al. 2011, “Control of the Threshold Voltage by Using the Oxygen Partial Pressure in Sputter-deposited InGaZnO4 Thin-film Transistors”, Journal of the Korean Physical Society, Vol. 60, No. 10, May 2012, pp. 1625~1628.
[21]Yih-Shing Lee, et al. 2012, “Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows”, Thin Solid Films 520 (2012) 6942–6946.
[22]Keisuke Ide, et al. 2011, “Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors”, APPLIED PHYSICS LETTERS 99, 093507 .
[23]Jayapal Raja, et al. 2013 “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors”, APPLIED PHYSICS LETTERS 102, 083505 (2013).
[24]Tien-Yu Hsieh, et al. 2011, “Effect of N2O plasma treatment on the improvement of instability under light illumination for InGaZnO thin-film transistors”, Thin Solid Films 520 (2011) 1427–1431.
[25]Po-Tsun Liu, et al. 2011 , “Nitrogenated amorphous InGaZnO thin film transistor”, APPLIED PHYSICS LETTERS 98, 052102.
[26]Jiyeon Kang, et al. 2012, “Compositional changes in the channel layer of an amorphous In–Ga–Zn-O thin film transistor after thermal annealing” Semicond. Sci. Technol. 27 (2012) 065002.
[27]Mallory Mativenga, et al.. 2012, “Study of mechanism of stress-induced threshold voltage shift and recovery in top-gate amorphous-InGaZnO4 thin-film transistorswithsource-and drain-offsets”, Solid State Communications 152 (2012) 1739–1743.
[28]Rongsheng Chen, et al. 2012, “Self-Aligned Indium–Gallium–Zinc Oxide
Thin-Film Transistor With Phosphorus-Doped Source/Drain Regions”, IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 8, AUGUST 2012.
[29]Jae Kyeong Jeong, et al.2009, “Impact of device configuration on the temperature instability of Al–Zn–Sn–O thin film transistors”, APPLIED PHYSICS LETTERS 95, 123505.
[30]Wei-Tsung Chen, et al. 2011, “Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In–Ga–Zn–O Thin-Film Transistors”, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 11, NOVEMBER 2011.
[31]Po-Tsun Liu, et al. 2009, “Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress”, APPLIED PHYSICS LETTERS 95, 233504.
[32]Sheng-Yao Huang, et al. 2011, “Improvement in the bias stability of amorphous InGaZnO TFTs using an Al2O3 passivation layer”, Surface & Coatings Technology.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊