(3.226.72.118) 您好!臺灣時間:2021/05/13 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭宇倫
研究生(外文):Yu-Lun Cheng
論文名稱:車載網路上快速與高成功率路由修復演算法之研究
論文名稱(外文):A Fast and High Reconnection Probability Routing Repairing Algorithm for Vehicular Area Networks
指導教授:黃世昌黃世昌引用關係
指導教授(外文):Shih-Chang Huang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:57
中文關鍵詞:隨意網路連線壽命車輛密度AODV路由修復
外文關鍵詞:VANETsAd-hoc NetworkRoute RepairAODVVehicle Density
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線通訊技術的快速發展,車載通訊網路近年來也成為無線網路技術中被關注的議題,車輛之間透過分享即時路況資訊至駕駛者,幫助駕駛者迴避擁塞或事故路段,以提升行車安全。這樣的技術亦可提供乘客上網服務、即時資訊的擷取與即時聊天等等,讓行車的旅程更舒適,當然這些服務需要穩定的無線網路通訊連線,確保資料傳遞的成功。而車載通訊網路快速變化的網路拓樸容易導致不穩定的通訊連線,致使多數應用在行動隨意網路(Ad Hoc Network)的路由技術無法適用,所以在高速移動的環境保持穩定的連線已成為車載網路重要的研究議題。目前大多數的研究都是依據連線壽命以及最短路徑來設計,而在高移動性的環境下,若只依車輛之間的連線壽命作為連線重建的依據,忽略節點身旁是否有足夠的車輛,容易產生連線失敗造成更大的通訊成本。因此,本篇論文將著重於設計高速移動的環境下維護車輛之間通訊路徑的方法,藉由改良AODV (ad-hoc on-demand distance vector)的路由機制,建立一條最短路徑以及最長連線壽命網路拓撲。當連線即將斷裂時,所提出的方法會預估連線剩餘可用的時間,提前啟動區域性路由修復,讓發送端與接收端感受不到斷線,達到無接縫連線再建。連線的方式採用雙向啟動,降低單邊連線建立所產生的延遲,同時也控制建立連線時發送的通訊封包數量降低通訊負載。在選取連線重建的位置上,所提出的方法參考鄰近車輛的密度來選擇,降低路由重建時因為節點不足所造成的連線失敗次數。

The quickly development of wireless communication technology makes the vehicular ad-hoc networks (VANETs) popularly been discussed in the recent year. In the inter-vehicle communication, the vehicles share the real-time traffic information for drivers to avoid road congestions and accidents to increase the safety effectively. For the passengers, VANETs can provide Internet services, real-time information and live-chat. These benefits let passengers feel more convenient in the journey. These services need a stable wireless network communication connection to ensure the success of data delivery. In VANETs, the high-speed mobile environment may cause communication connection becoming unstable. Many technologies used in ad-hoc network are unsuitable for VANETs. How to keep a stable communication connection on the high mobile environment has become an important topic. Current, most of the research focuses on extending the lifetime of path and finding the shortest path. However, in the high mobile environment, considering only the lifetime of path but ignoring the number of nearby vehicles of a node will make connection failed more frequently. The payment introduces greater cost on communication. Therefore, this paper focuses on designing the methods to retain the communication path in the high mobility communication environment. Firstly, we build the shortest path that has a long lifetime. Next, the remaining connection time will be estimated and trigger the local route repair procedure before the communication connection between inter-vehicle fails. The sender and the receiver will not feel the disconnection, and the route can be repaired seamlessly. The bidirectional local route repair is used to reduce the route reconnection time of the unidirectional route rebuilding procedure used in AODV. At the same time, the number of communication packets is also decreased. A method referring to the density of the nearby vehicles for choosing proper nodes to rebuild the route is proposed. The number of times to rebuild the route from source to destination that causes by lacking nodes while performing the route rebuilding can be reduced.

摘要....................................................i
Abstract...............................................ii
誌謝............ .......................................iii
表目錄........... .......................................v
圖目錄........... .......................................vi
第一章 簡介.............................................1
1.1 研究背景..........................................1
1.2 研究動機..........................................3
1.3 研究方法..........................................4
1.4 論文架構..........................................5
第二章 相關研究與文獻探討................................. .6
2.1 行動隨意網路(MANETs)與車載行動隨意網路(VANETs).........6
2.1.1 MANETs簡介........................................6
2.1.2 VANETs簡介........................................7
2.2 文獻探討...........................................10
第三章 快速與高成功率路由修復演算法...........................28
3.1 路徑建造...........................................28
3.2 區域路由修復........................................29
第四章 模擬結果與分析......................................39
4.1 模擬環境...........................................39
4.2 模擬結果...........................................40
4.3 結果比較與分析......................................46
第五章 結論與未來展望......................................47
參考文獻...................................................48
Extended Abstract........................................51
簡歷(CV)..................................................57


[1]A. Lakas and M. Cheqfah, “Detection and dissipation of road traffic congestion using vehicular communication, “ Mediterrannean Microwave Symposium (MMS), Nov. 2009, pp. 1-6.
[2]R. Bauza, J. Gozalvez, and J.S. Soriano, “Road traffic congestion detection through cooperative Vehicle-to-Vehicle communications,“ in Proceeding of the IEEE 35th Conference on Local Computer Networks (LCN), Oct. 2010, pp. 606-612.
[3]S. Alvin, T. Maolin, F. Yanming, and L. Mark, “A Multicast Routing Scheme for Efficient Safety Message Dissemination in VANET,” in Proceeding of IEEE Wireless Communications and Networking Conference (WCNC), April. 2010, pp. 1-6.
[4]K. Tsukamoto, H. Nataka, M. Fujii, M. Itami, and K. Itoh, “A study on collision avoidance in the system that integrates IVC and RVC,” in Proceeding of the IEEE Intelligent Vehicles Symposium, Jun. 2003, pp. 1-5.
[5]R. Lasowski and M. Strassberger, “A Multi Channel Beaconing Service for Collision Avoidance in Vehicular Ad-Hoc Networks,” in Proceeding of the IEEE Vehicular Technology Conference, Sep. 2011, pp. 1-5.
[6]T.L. Willke, P. Tientrakool, and N.F. Maxemchuk, “A survey of inter-vehicle communication protocols and their applications,” in Proceeding of the IEEECommunications Surveys & Tutorials, Jun. 2009, pp. 3-20.
[7]N. Thepvilojanapong, S. Motegi, and H. Horiuchi, “Performance Evaluation of Protocols for Inter-Vehicle Communications,” in Proceeding of the IEEE Intelligent Vehicles Symposium, Jun. 2007, pp. 931-937.
[8]W. Chen, R.K. Guha, T.J. Kwon, J. Lee, and I.Y. Hsu, “A Survey and Challenges in Routing and Data Dissemination in Vehicular Ad-hoc Network,” in Proceeding of the IEEE International Conference on Vehicular Electronics and Safety (ICVES 2008), Sep. 2008, pp. 328-333.
[9]G. Zhang, D. Mu, Z. Xu, W. Yang, and X. Cai, “A Survey on the Routing of Urban Vehicular Ad Hoc Network,” in Proceedings of the 27th Chinese Control Conference (CCC 2008), Jul. 2008, pp. 338-343.
[10]Y. Toor, P. Muhlethaler, A. Laouiti, and A. L. Fortelle, “Vehicle Ad Hoc Network Applications and Related Technical Issues,” IEEE communication Surveys & Tutorials, vol. 10,no. 3, Jul 2008, pp. 74-88.
[11]S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations”. IETF, Internet-Draft., Jan. 1999.
[12]C. E. Perkins and E. M. Royer, “Ad-hoc On-Demand Distance Vector Routing,” in Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA, Feb. 1999. pp. 90-100.
[13]D. B. Johnson, D. A. Maltz, and Y.-C. Hu, “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR),” IETF MANET Working Group INTERNET-DRAFT, 19 Jul. 2004.
[14]J. Sirilarn and K. Rojviboonchai, “OHO: OverHearing On-Demand Route Repair Mechanism for Mobile Ad Hoc Networks,” in Proceeding of the International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, May. 2010, pp. 66-70.
[15]B. Li, Y. Liu, and G. Chu, “Improved AODV Routing Protocol for Vehicular Ad hoc Networks,“ in Proceeding of the International Conference on Advanced Computer Theory and Engineering, Aug. 2010, vol. 4, pp. 337-340.
[16]F. Jiang and J. J. Hao, “Simulation of An Improved AODV Algorithm for Ad Hoc Network,” in Proceeding of the 2nd International Conference on Computer and Automation Engineering, Feb. 2010, pp. 540-543.
[17]S. Ding and L. Liu, “A node-disjoint multipath routing protocol based on AODV,” in Proceeding of the Ninth International Symposium on Distributed Computing and Applications to Business Engineering and Science, Aug. 2010, pp. 312-316.
[18]R. Kumar and K.V. Arya, “A Modified approach for route maintenance using Alternate Path in AODV,” in Proceeding of the International Conference on Computational Intelligence and Communication Networks, Oct. 2011, pp. 37-41.
[19]O. Abedi, R. Berangi, and M.A. Azgomi, “Improving route stability and overhead of the AODV routing protocol and making it usable for VANETs,” in Proceeding of the IEEE International Conference on Distributed Computing Systems Workshops, Jun. 2009, pp. 464-467.
[20]X. Yu, H. Guo, and W. C. Wong, “A Reliable Routing Protocol for VANETs Communications,” in Proceeding of the International Wireless Communications and Mobile Computing Conference, Jul. 2011, pp. 1748-1753.
[21]謝惇丞,2010,"車載網路上可靠的區域路由修補演算法之研究",國立虎尾科技大學光電與材料科技研究所碩士論文。
[22]IEEE Std. 802.11a, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher Speed Physical Layer in the 5GHz band," Sept. 1999.
[23]IEEE Std. 802.11b, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher Speed Physical Layer in the 2.4GHz band," Sept. 1999.
[24]IEEE Std. 802.11, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," Jun. 2003.
[25]IEEE std. 1609.1, "IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)-Resource Manager," Jun. 2006.
[26]IEEE std. 1609.2, "IEEE Trial-Use Standard for Wireless Access in Vehicular Environments-Security Services for Applications and Management Messages," Jul. 2006.
[27]IEEE std. 1609.3, "IEEE Trial-Use Standard for Wireless Access in Vehicular Environments -Networking Services," Apr. 2007.
[28]IEEE std. 1609.3, "IEEE Standard for Wireless Access in Vehicular Environments -Networking Services," Dec. 2010.
[29]IEEE std. 802.16-2004, "IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access System," Oct. 2004.
[30]IEEE std. 802.16e-2006, "IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access System-Amendment: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands," Feb. 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔