(18.204.227.34) 您好!臺灣時間:2021/05/14 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:阮錳新
研究生(外文):Manh-Tan Nguyen
論文名稱:網印鋁合金前射極對網印式負型單晶矽太陽能電池之特性研究
論文名稱(外文):Effects of Screen-Printed Aluminum-Alloyed Front Emitter on Characteristics of Screen-Printed N-Type Mono-Crystalline Silicon Solar Cells
指導教授:莊為群
指導教授(外文):Wei-Ching Chuang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:104
中文關鍵詞:絲網印刷矽太陽能電池前表面的領域單結晶矽太陽能電池薄膜電阻n-型矽
外文關鍵詞:Screen-printed silicon solar cellsfront surface fieldsmono-crystalline silicon solar cellssheet resistancen-type silicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
絲網印刷鋁 - 合金化前的發射器(AAFE)上絲網印刷的N型單晶矽太陽能的細胞(SPNMSSC)提出了的特性的影響。的薄層電阻和在SPNSSCs亞裔美人爭取平等“組織的厚度可以被調諧的燒成溫度,燒成時間,等待時間,以及蝕刻時間的KOH溶液,分別。結果表明的薄層電阻降低燒成時間的增加,分別從250到10Ω/ sq的。另一方面,片材電阻減小而減小的等待時間。隨著蝕刻時間的KOH溶液,鋁 - 對+的薄層電阻增加,減少的厚度的Al-+正面場。此外,通過提高焙燒溫度和時間,可以實現較大的厚度的正面場(FSF)。最佳的轉換效率,可以通過以下方式獲得適當打開的過程參數。

Effects of screen-printed aluminum-alloyed front emitter (AAFE) on characteristics of screen-printed N-type mono-crystalline silicon solar cells (SPNMSSC) were presented. The sheet resistance and the thickness of AAFE in SPNSSCs can be tuned by the firing temperature, the firing time, the waiting time, and the etching time of the KOH solution, respectively. The results show that the sheet resistance decreases from 250 to the 10 Ω/sq with increasing the firing time, respectively. On the other hand, the sheet resistance decreases with decreasing the waiting time. And with increasing etching time of the KOH solution, the sheet resistance of the Al-p+ was increased, and the thickness of the Al-p+ front surface field was decreased. Moreover, the larger thickness of the front surface field (FSF) can be achieved by increasing firing temperature and time. The optimum conversion efficiency can be obtained by suitably turned process parameters.

English Abstract
Acknowledgement ………………………………………………………………………..
………………………………………………………….……………. i
ii
Table of Contents ………………………………………………………………………... iii
List of Tables ………………………………………………………….……………. v
List of Figures ………………………………………………………….……………. vi
Symbols ………………………………………………………….……………. xiii
Chapter 1 Introduction…………………………………………………………... 1
1.1
1.2
1.3 Reviews of solar cells based on n-type silicon solar cells...……….....
Reviews of screen-printed mono-crystalline silicon solar cells….…...
Research motivations and contributions 1
2
5
Chapter 2 Experimental Procedures and Research Method...………………….… 8
2.1 Effects of the firing temperature, the firing time and the waiting time on the photovoltaic characteristics of the SPNMSSCs with Al-alloyed front emitter....………………………………………………………..

8
2.1.1 Cleaning and texturization n-type silicon...………………………….. 9
2.1.2 Screen-Printed Al paste full area…………………………………….. 9
2.1.3 Removed Al residual and Al-Si eutectic …………………………...... 10
2.1.4 Diffused n++ by SOD-P ….………………….……………………….. 10
2.1.5
2.1.6
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.3
2.3.1
2.3.2
2.3.3
2.4 SP Ag whole side and SP Al grid and co-firing.……………………..
Coating Si3N4 by PEVCD…………………………………………….
Effects of etching time of KOH solution on the photovoltaic characteristics of the SPNMSSCs with Al-alloyed front emitter…….
Cleaning and texturization n-type silicon...……………………………
Screen-Printed Al paste full area……………………………………...
Removed Al residual and Al-Si eutectic ………………………….......
Etching Al-p+-layer in KOH solution…………………………….…...
Diffused n++ by SOD-P ….………………….………………….……..
SP Ag whole side and SP Al grid and co-firing.……………….……..
Coating Si3N4 by PEVCD…………………………………………….
Electrical measurements…………………………………….………...
Solar cells conversion efficiency measurement………………………
The external quantum efficiency (EQE) measurement…………….…
The four point probe measurement sheet resistance………….………
The property scanning electrode microscopy measurement machine 11
11

11
12
12
12
13
13
14
14
14
14
15
15
16
Chapter 3 Effects of the firing temperature, the firing time and the waiting time on the photovoltaic characteristics of screen-printed N-type mono-crystalline silicon solar cells..……..…………………………...

24
3.1 Research motivation………………………………………………….. 24
3.2
3.3 Results and Discussion………………………………………………..
Conclusion……………………………………………………………. 24
34
Chapter 4 Effects of the etching time of KOH solution on the photovoltaic characteristics of the screen-printed n-type mono-crystalline silicon solar cells……………..……………………………….………………. 22

66
4.1 Research motivation.………………………………………………….. 66
4.2
4.3 Results and Discussion………………………………………………...
Conclusion 66
73
Chapter 5 Conclusion and Future Research….…………...................…………… 90
5.1 Conclusions…..……………………………………………………….. 90
5.2 Future Research…..………………………………………………….. 91
Reference ………………………………………………………….……………. 92
Extended Abstract ………………………………………………………….……………. 99
Curriculum Vitae ………………………………………………………….……………. 104


[1] P. Ortega, I. Martin, G. Lopez, M. Colina, A. Orpella, C. Voz, and R. Alcubilla, “P-type c-Si solar cells based on rear side laser processing of Al2O3/SiCx stacks,” Solar Energy Materials & Solar Cells, vol. 106, pp. 80-83, 2012.
[2] C. Xiao, D. Yang, X. Yu, X. Gu, and D. Que, “Influence of the compensation level on the performance of p-type crystalline silicon solar cells: Theoretical calculations and experimental study,” Solar Energy Materials & Solar Cells, vol. 107, pp. 263–271, 2012.
[3] M. Tucci, and G. D. Cesare, “17 % efficiency heterostructure solar cell based on p-type crystalline silicon,” Journal of Non-Crystalline Solids, vol. 338-340, pp. 663-667, 2004.
[4] J. Schmidt, A. G. Aberle, and R. Hezel, “Investigation of carrier lifetime instabilities in CZ grown silicon,” 26th IEE, Photovoltaic Specialists Conference (PVSC), pp. 13-18, 1997.
[5] J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher, “P-type versus n-type silicon wafers: prospects for high efficiency commercial silicon solar cells,” IEE Transactions On Electron Devices, vol. 53, no. 8, August 2006.
[6] D. Macdonald, and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Applied Physics Letters, vol. 85, number 18, 1 November 2004.
[7] S. Singh, N. E. Posthuma, F. Dross, J. Poortmans and R. Mertens, “Improvement in Al-alloyed emitter on rear-junction n-type mc-Si cell using a stack of pure Al and screen-printed Al paste,” 35th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 003608-003610, 2010.
[8] Y. SChiele, F. Book, S. Seren, G. Hahn, and B. Terheiden, “Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers,” Energy Procedia, vol. 27, pp. 460-466, 2012.
[9] F. Granek, and C. Reichel, “Back-contact back-junction silicon solar cells under UV illumination,” Solar Energy Materials & Solar Cells, vol. 94, pp. 1734-1740, 2012.
[10] R. Woehl, J. Krause, F. Granek, and D. Biro, “Highly efficiency all-screen-printed back-contact back-junction silicon solar cells with aluminum-alloyed emitter,” Energy Procedia, vol. 8, pp. 17-22, 2011.
[11] D. Thibaut, D. V. Sylvain, S. Florent, D. Djicknoum, M. Delfina, G. F. Marie, K. J. Paul, and R. P. Jean, “Development of interdigitated back contact silicon heterojunction (IBC Si-HJ) Solar Cells, Energy Procedia, vol. 8, pp. 294-300, 2011.
[12] R. Stangl, J. Haschke, M. Bivour, L. Korte, M. Schmidt, K. Lips, and B. Rech, “Planar rear emitter back contact silicon heterojunction solar cells,” Solar Energy Materials & Solar Cells, vol. 93, pp. 1900-1903, 2009.
[13] J. Libal, R. Petres, R. Kopecek, G. Hahn, K. Wambach, and P. Fath, “N-type multicrystalline silicon solar cells with BBr3-diffused front junction,” 31th IEEE, Photovoltaic Specialists Conference, pp. 1209-1212, 2005.
[14] S. W. Yang, and Y. K. Kim, “Boron diffusion into silicon crystal with SiNx layer as reaction barrier,” Solar Energy Materials & Solar Cells, vol. 94, pp. 2187-2190, 2010.
[15] Y. Komatsu, V. D. Mihailetchi, L. J. Geerligs, B. Van Dijk, J. B. Rem, and M. Harris, “Homogeneous p+ emitter diffused using boron tribromide for record 16.4 % screen-printed large area n-type mc-Si solar cell,” Solar Energy Materials & Solar Cells, vol. 93, pp. 750-752, 2009.
[16] J. Jourdan, S. Dubois, R. Cabal, and Y. Veschetti, “Electricla proterties of n-type multicrystalline silicon for photovoltaic application-Impact of high temperature boron diffusion,” Materials Science and Engineering B, vol. 159-160, pp. 305-308, 2009.
[17] A. M. Slade, C. B. Honsberg, and S. R. Wenham, “Impact and options for boron diffusion in buried contact solar cells,” Solar Energy Materials & Solar Cells, vol. 66, pp. 11-15, 2001.
[18] F. Recart, I. Freire, L. Perez, R. Lago-Aurrekoetxea, J. C. Jimeno, and G. Bueno, “Screen printed boron emitters for solar cells,” Solar Energy Materials & Solar Cells, vol. 91, pp. 897-902, 2007.
[19] T. Y. Kwon, D. H. Yang, M. K. Ju, W. W. Jung, S. Y. Kim, Y. W. Lee, D. Y. Gong, and J. Yi, “Screen printed phosphorous diffusion for low-cost and simplified industrial mono-crystalline silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 95, pp. 14-17, 2011.
[20] A. Mette, C. Schetter, D. Wissen, S. Lust, S. W. Glunz and G. Willeke, “Increasing the efficiency of screen-printed silicon solar cells by light-induced silver plating,” IEEE 4th World Conference, Photovoltaic Energy Conversion, vol. 1, pp. 1056-1059, 2006.
[21] V. Prajapati, J. Horzel, P. Choulat, T. Janssens, J. P. and R. Mertens, “Oxidation Enhanced Diffusion for Screen Printed Silicon Solar Cells,” 38th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 001089-001093, 2012.
[22] E. Lee, K. Cho, Do. Oh, J. Shim, H. Lee, J. Choi, J. Kim, J. Shin, S. Lee, and H. Lee, “Exceeding 19 % efficient 6 inch screen printed crystalline silicon solar cells with selective emitter,” Renewable Energy, vol. 42, pp. 95-98, 2012.
[23] H. Park, J. S. Lee, S. Kwon, S. Yoon, and D. Kim, “Effect of surface morphology on screen printed solar cells,” Current Applied Physics, vol. 10, pp. 113-118, 2010.
[24] Mi. Rauer, C. Schmiga, J. Krause, R. Woehl, M. Hermle and S. W. Glunz, “Further analysis of aluminum alloying for the formation of p+ regions in silicon solar cells,” Energy Procedia, vol. 8, pp. 200-206, 2011.
[25] D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p-n junction dendritic web silicon solar cell,” Solar Energy Materials & Solar Cells, vol. 65, pp. 621-627, 2001.
[26] D. S. Saynova, V. D. Mihailetchi, L. J. Geerligs, and A. W. Weeber, “Comparison of high efficiency solar cells on large area n-type and p-type silicon wafers with screen-printed aluminum-alloyed rear junction,” 33rd IEEE, Photovoltaic Specialists Conference (PVSC), pp. 1-5, 2008.
[27] E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, “Silicon diffusion in aluminum for rear passivity solar cells,” Applied Physics Letters, vol. 98. pp. 153508, 2011.
[28] C. M. Dinnis, A. K. Dahle, and J. A. Taylor, “Three-dimensional analysis of eutectic grains in hypoeutectic Al-Si alloys,” Materials Science and Engineering A, vol. 392, pp. 440-448, 2005.
[29] A. Sugianto, L. Mai, M. B. Edwards, Bu. S. Tjahjono, and S. R. Wenham, “Investigation of Al-Doped Emitter on N-Type Rear Junction Solar Cells,” IEEE Transaction on Electron Devices, vol. 57, no. 2, February 2010.
[30] Z. Du, N. Palina, J. Chen, M. Hong, and B. Hoex, “Rear-side contact opening by laser ablation for industrial screen-printed aluminum local back surface field silicon wafer solar cells,” Energy Procedia, vol. 25, pp. 19-27, 2012.
[31] D. Y. Lee, H. H. Lee, J. Y. Ahn, H. J. Park, J. H. Kim, H. J. Kwon, and J. W. Jeong, “A new back surface passivation stack for thin crystalline silicon solar cells with screen-printed back contacts,” Solar Energy Materials & Solar Cells, vol. 95, pp. 26-29, 2011.
[32] R. Chaoui, and A. Messaoud, “Screen-printed solar cells with simultaneous formation of porous silicon selective emitter and antireflection coating,” Desalination, vol. 209, pp. 118-121, 2007.
[33] M. Ju, Y. J. Lee, J. Lee, B. Kim, K. Ryu, K. Choi, K. Song, K. Lee, C. Han, Y. Jo, and J. Yi, “Double screen-printed metallization of crystalline silicon solar cells as low as 30 μm metal line width for mass production,” Solar Energy Materials & Solar Cells, vol. 100, pp. 204-208, 2012.
[34] A. Edler, V. Mihailetchi, R. Kopecek, R. Harney, T. Boscke, D. Stichtenoth, J. Lossen, K. Meyer, R. Hellriegel, T. Aichele, and H. J. Krokoszinski, “Improving screen printed metallization for large area industrial solar cells based on n-type material,” Energy Procedia, vol. 8, pp. 493-497, 2011.
[35] C. H. Lin, S. Y. Tsai, S. P. Hsu, and M. H. Hsieh, “Structural properties of the solidified-Al/regrown-Si structures of printed Al contacts on crystalline Si solar cells,” Solar Energy Materials & Solar Cells, vol. 92, pp. 986-991, 2008.
[36] B. Thaidigsmann, C. Kick, A. Drews, F. Clement, A. Wolf, and D. Biro, “Fire-through contacts – a new approach to contact the rear side of passivity silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 108, pp. 164-169, 2013.
[37] J. Schmidt, N. Thiemann, R. Bock, and R. Brendel, “Recombination lifetimes in highly aluminum-doped silicon,” Journal of Applied Physics, vol. 106, pp. 093707, 2009.
[38] R. Woehl, P. Gundel, J. Krause, K. Ruhle, F. D. Heinz, M. Rauer, C. Schmiga, M. C. Schubert, W. Warta, and Daniel Biro, “Evaluating the aluminum-alloyed p+-layer of silicon solar cells by emitter saturation current density and optical microspectroscopy measurements,” IEEE Transactions on Electron Devices, vol. 58, no. 2, February 2011.
[39] S. Singh, F. Dross, N. E. Posthuma, and R. Mertens, “Lare area 15.8 % n-type mc-Si screen-printed solar cell with screen printed Al-alloyed emitter,” Solar Energy Materials & Solar Cells, vol 95, pp. 1151-1156, 2011.
[40] J. Krause, R. Woehl, M. Rauer, C. Schmiga, J. Wilde, and D. Biro, “Microstructural and electrical properties of different-sized aluminum-alloyed contacts and their layer system on silicon surfaces,” Solar Energy Materials & Solar Cells, vol. 95, pp. 2151-2160, 2011.
[41] S. Narasimha and A. Rohatgi, “Optimized aluminum back surface field techniques for silicon solar cells,” 26th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 63-66, 1997.
[42] C. Gong, K. V. Nieuwenhuysen, N. E. Posthuma, E. V. Kerschaver, and J. Poortmans, “Another approach to form p+ emitter for rear junction n-type solar cells: Above 17.0 % efficiency cells with CVD boron-doped epitaxial emitter,” Solar Energy Materials & Solar Cells, vol. 95, pp. 11-13, 2011.
[43] K. Ryu, A. Upadhyaya, Y. W. Ok, H. Xu, L. Metin, and Ajeet Rohatgi, “High efficiency n-type solar cells with screen-printed boron emitters and ion-implanted back surface field,” 38th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 002247-002249, 2012.
[44] R. Bock, S. Mau, J. Schmidt, and R. Brendel, “Back-junction back-contact n-type silicon solar cells with screen-printed aluminum-alloyed emitter,” Applied Physics Letters, vol. 96, pp. 263507, 2010.
[45] C. Reichel, F. Granek, M. Hermle, and S. W. Glunz, “Investigation of electrical shading effects in back-contacted back-junction silicon solar cells using the two-dimensional charge collection probability and the reciprocity theorem,” Journal Of Applied Physics, vol. 109, pp. 024507, 2011.
[46] T. Desrues, S. D. Vecchi, F. Souche, D. Munoz and P. J. Ribeyron “SLASH concept: A novel approach for simplified interdigitated back contact solar cells fabrication,” 38th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 001602-001605, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔