(18.206.238.77) 您好!臺灣時間:2021/05/18 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:韋銘展
研究生(外文):Ming-Chan Wei
論文名稱:光學增透膜應用於發光二極體與太陽電池封裝效率之研究
論文名稱(外文):Study of the Encapsulation Efficiency for Light-Emitting Diode and Solar Cell by Applying the Optical Antireflection Films
指導教授:陳文瑞陳文瑞引用關係
指導教授(外文):Wen-Ray Chen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:光學薄膜封裝
外文關鍵詞:Optical filmpackage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以真空鍍膜技術,針對可見光400~700nm波段、可見光400~600nm波段與紫外光340~420nm,製作用於穿透窗應用之高穿透率玻璃封裝基板,實驗以編號B-270之玻璃材質上使用高折射率藥材La2TiO3與低折射率藥材MgF2製作數組增透膜,將這些增透膜玻璃封裝於太陽電池與發光二極體之穿透窗上,隨後量測這些封裝樣品的光特性與電特性。實驗結果顯示無論單面或是雙面樣品,其平均穿透率隨著鍍膜層數的增加而提高,因而提升太陽電池的轉換效率與提高發光二極體之出光通量。與未鍍膜玻璃封裝之太陽電池比較,單面鍍膜與雙面鍍膜之光電轉換效率比未鍍膜樣品分別高出2.3%與4.6%。對於白光發光二極體之光通量而言,單面鍍膜與雙面鍍膜之光通量比未鍍膜樣品分別高出2.5%與5.3%,所以雙面鍍膜樣品的穿透效率比單面鍍膜為佳。然而穿透光線之效率並無隨著鍍膜對數增加而提升,因兩對、四對、六對、八對鍍膜樣品所量到之效率結果顯示都差不多,所以為了最低成本之考量,選擇兩對鍍膜作為封裝樣品之穿透窗為較佳。對於UV-發光二極體之光穿透率而言,光穿透率會因為層數與膜厚的增加造成光穿透率下降,運用較小功率時,光穿透率會因為膜堆而受到優化,在較大的UV-LED光穿透率時,會因為高折射率藥材參雜金屬材質,造成抗反射膜的吸收與反射導致光穿透率下降。

In this dissertation, we used vacuum coating technology to fabricate high transmittance glass packaged substrates for the application of transmittance window in visible 400~700 nm, 400~600 nm and ultraviolet (UV) 340~420nm wavelengths. The several sets of antireflection films were fabricated on a glass numbered B-270 by a high refraction index material La2TiO3 and a low refraction index material MgF2. These glasses with antireflection films were then packaged on the transmittance windows of solar cells and light emitting diodes. The optical and electrical properties of these packaged samples were also characterized. It was found that the average transmittances of the both samples with single and double sides coating films increase with increasing the numbers of coating films, which resulting in improved conversion efficiencies of the solar cells and output luminous fluxes of light emitting diodes. Comparing to the solar cell without packaged glass with antireflection films, the conversion efficiencies of the cells with single and double sides coating films increase 2.3% and 4.6%, respectively. For white light emitting diodes, the luminous fluxes of the diodes with single and double sides coating films are higher than the one without coating films about 2.5% and 5.3%, respectively. Therefore, the transmittance of the sample with double sides coating films is better than the sample with single side coating film. However, the transmittance does not increase with increasing pairs of coating films. For the low cost consideration, two-pairs coating film is the better choice as the transmittance window of the packaged sample because the measured transmittances of the samples with two-, four-, six- and eight-pairs coating films are almost the same. For the UV light emitting diodes, the luminous fluxes of the diodes decrease with increasing the layers and thickness of the coating films. When the diodes operated under low power condition, the luminous fluxes can be optimized by the film layers. On the other hand, when the diodes operated under high power condition, due to the high refraction index material doped metals, the absorption and reflection of antireflection films would result in the decrease of luminous fluxes.

中文摘要..........i
英文摘要..........ii
誌謝..........iv
目錄..........v
表目錄..........vii
圖目錄..........viii
第一章 序論..........1
1-1簡介..........1
1-2文獻回顧..........3
1-3研究動機與方法..........5
第二章 基礎理論..........6
2-1光學薄膜基本理論..........6
2-1-1以多層膜製備高穿透率玻璃之原理..........6
2-1-2穿透率最佳化分析..........9
2-1-3物理氣相沉積法(PVD)..........11
2-1-4電子槍動作原理..........12
2-2太陽電池工作原理與量測特性..........14
2-3發光二極體工作原理與量測特性..........16
第三章 實驗架構與量測儀器..........19
3-1 實驗架構..........19
3-1-1抗反射膜基板製作..........19
3-1-2 La2TiO3與MgF2材料特性..........22
3-2太陽電池封裝製作..........23
3-3發光二極體封裝製作..........24
3-4 量測儀器介紹 ..........25
第四章 結果與討論..........29
4-1鍍膜參數分析..........29
4-1-1抗反射膜之膜堆厚度結構與設計模擬..........29
4-1-2穿透率量測..........37
4-1-3鍍膜參數穿透率分析..........43
4-2太陽電池特性量測與分析..........46
4-3 LED特性分析 ..........59
4-3-1白光發光二極體特性量測與分析..........59
4-1-2 UV-發光二極體特性量測與分析..........62
第五章 結論..........65
參考文獻..........67
Extended Abstract..........70
簡歷..........74

[1] NPD Solarbzz台北辦公室 “預計仍是呈現個位數成長的一年,中國、日本和印度佔全球36%的比重” (March 11, 2013)
[2] NPD Solarbuzz 台北辦公室 “新興亞洲國家太陽能發電需求將以年均 28%的成長率邁向2017年” (2013年4月2日)
[3] 葉耀宗、董建岳、劉偉仁、張學明、陳政民,“白光LED與螢光粉特性探討(上)”,工業材料雜誌 257,129-138(2008)。
[4] 李正中 “薄膜光學與鍍膜技術”第六版,藝軒出版社,(2009)
[5] 莊明正,“太陽電池抗之反射膜特性研究”,清雲科技大學電子工程研究所碩士論,2008。
[6] 張敏南,“提升氮化鎵發光二極體發光效率之研究”,國立成功大學光電科學與工程研究所碩士論,2009。
[7] 楊勁生,“氧化銦錫奈米柱狀結構應用於提升氮化鎵發光二極體之出光效率”,國立交通大學光電工程研究所碩士論,2009。
[8] 林志雄,“使用反應濺鍍法於塑膠基板上製鍍抗反射膜之研究”,國立中央大學光電科學與工程學系碩士論,2008。
[9] H. J. Glaser, Large Area Glass Coating, Von Ardenne, Dresden, 2000.
[10] H.K. Pulker, Coatings on Glass, 2nd ed., Elsevier Science, Amsterdam, 1999.
[11] Lockhart, King ”Three layered reflection reducing coatings” J. Opt. Soc. Am., Vol.37. pp. 689-694, 1947。
[12] U.S. Patent 2478385, R. A. Ragiser, “Multilayer low light reflecting film”, 1949.
[13] U.S. Patent 3185020, A. J. Thelen, “Three layer anti-reflection coating”, 1965.
[14] Tianze Li, Chuan Jiang, Cuixia Sheng, Hengwei Lu, Luan Hou, and Xia Hang, “Research on new technologies of photoelectric conversion efficiency in solar cell”, IEEE CONFERENCE PUBLICATIONS, pp.4002-4005, 2010.

[15] Rudaz, S. ,and Fletcher, R.“Advances in InGaN technology for light-emitting diodes and semiconductor lasers”, IEEE CONFERENCE PUBLICATIONS, pp. 123 – 131 1998.
[16] H. J. Glaser, Large Area Glass Coating, Von Ardenne, Dresden, 2000.
[17] H.K. Pulker, Coatings on Glass, 2nd ed., Elsevier Science, Amsterdam, 1999.
[18] J. Ullmann, C. Zaczek, A. Pazidis, J. Ludecke, B. von Blanckenhagen, D. Tonova, “Optical Coatings for VUV Applications”, Optical Interference Coatings Conference 2001, Banff, Alberta, Canada,ThB4.
[19] Detlev Ristau, Stefan Gunster, Salvador Bosch, Angela Duparre, Enrico Masetti, Josep Ferre-Borrull, George Kiriakidis, Francesca Peiro, Etienne Quesnel, and Alexander Tikhonravov, ”UV-Optical and Microstructural Properties of MgF2- and LaF3-Coatings Deposited by IBS and PVD Processes”, Optical Interference Coatings Conference 2001, Banff, Alberta, Canada, ThA5.
[20] 許阿娟 朱佳雯 林佳芬 陳志隆,“光學系統設計進階篇”,第七章最佳化分析 ,(fourth version;2002版)
[21] David A Glocker, Handbook of Thin Film Process Technology, Bristol, UK(1995).
[22] 施敏 伍國钰,“半導體原件物理學”,國立交通大學出版社,第三版,下冊,(2011)
[23] 陳隆建,2009,發光二極體之原理與製程,全華科技圖書股份有限公司
[24] 高正雄,“光學玻璃”,復漢出版社,一版二刷,(2001)
[25] 童啟弘,“離子源輔助蒸鍍紫外線光學薄膜之研究”,國立中央大學光電碩士論,2002。
[26] Stelur et al, “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2 (2004).
[27] 黃文雄,”製程參數對薄膜應力影響之研究”,國立中央大學光電科學研究所碩士論文,(2001)。
[28] HITACH,“MODEL U-4100 SPECTROPHOTOMETER INSTRUCTION MANUAL”。
[29] 萊普士光電科技,”積分球工作原理”,http://WWW.lightports.com
[30] 郭泰麟,“離子液體液晶製備凝固態電解質應用於染料敏化太陽能電池”,國立中山大學光電工程學系碩士論文,(2010)。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top