(3.235.139.152) 您好!臺灣時間:2021/05/11 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何家丞
研究生(外文):Chia-Cheng Ho
論文名稱:利用氮化鋁-氧化鋅共濺鍍薄膜應用於雙異質接面發光二極體
論文名稱(外文):Investigation on AlN-ZnO Cosputtered Films for ZnODouble Heterojunction Light-Emitting Diode Application
指導教授:劉代山
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:射頻磁控共濺鍍氮化鋁氧化鋅雙異質結構發光二極體
外文關鍵詞:RF magnetron sputteringAlNZnOdouble heterostructurelight-emitting diode
相關次數:
  • 被引用被引用:5
  • 點閱點閱:267
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻磁控共濺鍍系統,分別使用氧化鋅、氮化鋁靶材製作出未摻雜氧化
鋅薄膜與摻雜比例不同的氮化鋁-氧化鋅共濺鍍薄膜,後續進行真空環境700℃熱處理改善其薄膜結晶性與光電特性,利用未摻雜氧化鋅薄膜與摻雜比例不同的氮化鋁-氧化鋅共濺鍍薄膜製作出不同異質結構,分別為n-ZnO、AlN -ZnO(40%)/ZnO/
AlN-ZnO (20%)與AlN-ZnO (40%)/ZnO/AlN-ZnO (40%)等三種結構,藉由室溫光激發螢光光譜量測探討其三種結構之氧化鋅 NBE 強度,發現AlN-ZnO 40%/ZnO/AlN-ZnO 40%之強度為最高,並將其製作成雙異質發光二結體元件於商用p-GaN 基板上,從歐杰縱深分析觀察到各層元素較無明顯擴散,而I-V 量測發現高溫熱處理下會裂化其接觸電極之電特性,於是使用硫化銨對p-GaN 進行硫化處理去除p-GaN 的原生Ga-O 鍵結,造成Ga 空缺以提升表面受體濃度,優化p-GaN 與其接觸電極材料Ni/Au 之接觸特性,而n 型區域則濺鍍上一層薄ZnO 薄膜以改善AlN-ZnO 40%與ITO-ZnO 33%的接觸特性,其接觸特性從2.34E-03 Ω ㎝
2 改善到8.54E-04 Ω ㎝ 2,而改善雙異質結構(AlN-ZnO 40%/ZnO/AlN-ZnO 40%)則可以達到最高氧化鋅能帶邊緣放射提昇,藉由最佳化結構(AlN-ZnO (40%)/ZnO/AlN-ZnO(40%))製作與n 型電極接觸特性優化等方式,提升氮化鋁-氧化鋅/氧化鋅雙異質接面發光二極體的短波長發光。

AlN-ZnO cosputtered films were made of radio-frequency magnetron cosputtering system by using target AlN and ZnO. Film crystallinity and optoelectronic properties after
annealing at 700℃ for 30min under vacuum ambient were improved. The use of un-doped zinc oxide thin films with different doping ratio AlN – ZnO sputtering film produce different heterostructures which are N-ZnO, AlN-ZnO(40%)/ZnO/AlN-ZnO(20%) and AlN-ZnO(40/%)/ZnO/AlN-ZnO (40%). Exploring the three structures of zinc oxide NBE intensity measured by the room temperature photoluminescence, we found the intensity of the
AlN-ZnO 40/ZnO/AlN-ZnO 40% is the highest, and making double heterojunction LED junction body components in the commercial p-GaN substrate observes no significant
diffusion in each element layer according to the Auger depth analysis, in I-V measurements,found that the high-temperature heat treatment will cause electrical characteristics crack of contacted electrodes, thus, proceeding vulcanization treatment with ammonium sulfide to
p-GaN to remove native Ga-O bonding of p-GaN, cause Ga vacancy and enhance surface receptor concentration. Optimized p-GaN and contact features of the contacted electrode material, Ni / Au. By sputtering a thin layer of ZnO to n-type region can improve the contact
characteristics of the AlN-ZnO 40% and 33% of the ITO-ZnO from 2.34E-03 Ω ㎝ 2 to 8.54E-04 Ω ㎝ 2. And the improvement of the double heterostructure (AlN-ZnO40%/ZnO/AlN-ZnO 40%)leads to the highest enhancement of zinc oxide band edge radiation.Trough structure optimization (AlN-ZnO (40%)/ZnO/AlN-ZnO (40%) and n-type electrode
contact characteristics enhancement, short-band luminous intensity of AlN –ZnO/ZnO doubleheterojunction light emitting diodes would be effectively improved.

中文摘要 ……………………………………………………………… i
英文摘要 ………………………………………………………….. ii
致謝 ……………………………………………………………. iv
目錄 ……………………………………………………………… v
表目錄 ……………………………………………………………… vii
圖目錄 ……………………………………………………………… viii
第一章 緒論………………………………………………………… 1
1.1 前言………………………………………………………… 1
1.2 文獻回顧…………………………………………………… 2
1.3 研究動機…………………………………………………… 3
第二章 理論基礎…………………………………………………… 9
2.1 電漿理論…………………………………………………… 9
2.2 射頻磁控濺鍍原理………………………………………… 9
2.3 薄膜成核理論……………………………………………… 10
2.4 薄膜材料特性簡介………………………………………… 10
2.4.1 氧化鋅薄膜………………………………………………… 10
2.4.2 氮化鎵薄膜…………………………………………… 11
2.4.3 氧化銦錫薄膜……………………………………………… 11
2.4.4 氮化鋁薄膜………………………………………………… 11
2.5 LED 發光機制……………………………………………… 12
2.5.1 直接發光與間接發光…………………………………… 12
2.5.2 載子注入… … … … … … … … … … … … … … … … 12
2.6 金屬與半導體接觸理論………………………………. 14
2.6.1 歐姆接觸理論… … … … … … … … … … … … … … … . 14
第三章 實驗製程方法與步驟……………………………………… 25
3.1 實驗流程說明……………………………………………… 25
3.2.1 共濺鍍系統說明…………………………………………… 25
3.2.2 基板清洗過程……………………………………………… 26
3.2.3 薄膜製作流程………………………………………… 26
vi
3.3 傳輸線模型製程流程……………………………………… 27
3.4 二極體製作流程… … … … … … … … … … … … … … 27
3.5 實驗儀器量測原理…………………………………… 28
3.5.1 表面輪廓分析儀… … … … … … … … … … … … … … . 28
3.5.2 霍爾量測系統………………………………………….. 28
3.5.3 歐傑電子能譜圖……………………………………… 28
3.5.4 半導體參數分析儀……………………………………. 29
3.5.5 光學穿透量測與分析……………………………………. 29
3.5.6 光激發螢光量測…………………………………………… 29
3.5.7 電激發螢光量測……………………………………….. 30
第四章 結果與討論………………………………………………… 40
4.1 不同溫度熱處理ZnO薄膜應用於ZnO/GaN LED……… 40
4.1.1 不同溫度熱處理氧化鋅薄膜之光電特性………………… 40
4.1.2 不同溫度熱處理氧化鋅薄膜應用於發光二極體之分
析… … … . . … … … … … … … … … … … … … … . … …
40
4.1.3 改善p 型氮化鎵與鎳/金電極接觸後之元件特性分
析… … … … … … … … … … … … … … … … … … … . …
41
4.2 AlN-ZnO與ZnO薄膜應用於雙異質接面發光二極體…… 42
4.2.1 氮化鋁- 氧化鋅共濺鍍薄膜之光電特性分
析….……………………………………………………
42
4.2.2 氮化鋁-氧化鋅/氧化鋅雙異質接面發光二極體特性分
析… . … … … … … … … … … … … … … … … … … … …
43
4.3 A l N - Z n O / Z n O 雙異質結構發光二極體特性優
化… … … … … … … … … … … … … … … . . . … . … …
44
4.3.1 不同結構之AlN-ZnO/ZnO 雙異質結構發光二極體特性
分析… … … … … … … … … … … … … … … … … …
44
4.3.2 AlN-ZnO/ZnO 雙異質結構發光二極體n 型電極接觸特性
優化… … … … … … … … … … … … … … … … … … …
44
4.3.3 優化AlN-ZnO/ZnO 雙異質結構發光二極體之特性量
測… … … … … … … … … … … … … … … … … … …
45
第五章 結論與未來工作…………………………………………… 69
參考文獻 ……………………………………………………………… 70

參考文獻
【1】 S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama,,“High-Brightness InGaN Blue,
Green and Yellow Light-Emitting Diodes with Quantum Well Structures ”, Jpn. J.
Appl. Phys., 34, 797 (1995)
【2】 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y.
Sugimoto, H. Kiyoku,1996,“Room-temperature continuous-wave operation of InGaN
multi-quantum-well-structure laser diodes with a long lifetime”, Appl. Phys. Lett., 70,
868 (1996).
【3】 M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. chen, J. Burm, and W. Schaff,
“Temperature activated conductance in GaN/AlGaN heterostructure field effect
transistors operating at temperatures up to 300 °C”, Appl. Phys. Lett., 66, 1083
(1995).
【4】 O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, H. Morkoc, “High
temperature characteristics of AlGaN/GaN modulation doped field-effect
transistors”, Appl. Phys. Lett., 69, 3872 (1996).
【5】 P. Fischer, J. Christen, S. Nakamura, “Spectral electroluminescence mapping of a
bule InGaN single quantum well light-emitting diode”, Jpn. J. Appl. Phys., 39, 129
(2000).
【6】 M. Osinski, P. G. Eliseev, “Radiative recombination mechanisms in high brightness
nichia blue LEDS”, Solid-State Electronic., 41, 155 (1997).
【7】 R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu,
S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (1013
) InGaN/GaN green light emitting diode”, Appl. Phys. Lett., 87, 231110 (2005).
【8】 K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, I. G. Chen,
“Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by
metalorganic chemical vapor deposition”, Appl. Phys. Lett., 85, 401 (2004).
【9】 Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, S. Nakamura, “Radiative
and nonradiative recombination processes in ultraviolet light-emitting diode
composed of an In0.02Ga0.98N active layer”, Appl. Phys. Lett., 74, 558 (1999).
【10】 T. Mukai, D. Morita, S. Nakamura, “High-power UV InGaN/AlGaN
double-heterostructure LEDs”, J. Cryst. Growth, 189-190, 178 (1998).
71
【11】 J. Huang, W. J. Hou, J. H. Li, G. Li, Yang Yang, “Improving the power efficiency of
white light-emitting diode by doping electron transport material”, Appl. Phys. Lett.,
89, 133509 (2006).
【12】 D. Haranath, H. Chander, P. Sharma, S. Singh, “Enhanced luminescence of
Y3Al5O12:Ce3+ nanophosphor for white light emitting diodes”, Appl. Phys. Lett., 89,
179118 (2006).
【13】 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto,
“Optically pumped lasing of ZnO at room temperature”, Appl. Phys. Lett., 70, 2230
(1997).
【14】 A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani,
S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, “Repeated
temperature modulation epitaxy for p-type doping and light-emitting diode based on
ZnO”, Nat. Mater., 4, 42 (2005).
【15】 Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, B. M. Ataev ,
“Observation of 430nm electroluminesce from ZnO/GaN heterojunction
light-emitting diodes ”, Appl. Phys. Lett.,83,2943(2003)
【16】 D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung,
“Electroluminescence at 375nm form a ZnO/GaN:Mg/c-Al2O3
heterojunction light emitting diode” , Appl. Phys. Lett., 88 , 141918 (2006)
【17】 Sejoon Lee 1, Deuk Young Kim, “Characteristics of ZnO/GaN heterostructure
formed on GaN substrate by sputtering deposition of ZnO” , Materials Science and
Engineering B , 137,80–84(2007).
【18】 Hao Zheng, Z.X. Mei, Z.Q. Zeng, Y.Z. Liu, L.W. Guo , J.F. Jia , Q.K. Xue , Z.
Zhang , X.L. Du , “Fabrication and characterization of high quality n-ZnO/p-GaN
heterojunction light emission diodes” , Thin Solid Films,520,445-447(2011)
【19】 T. Wang, Hao Wu, Z. Wang, C. Chen, and Chang Liu, “Ultralow Emission
Threshold Light-Emitting Diode of Nanocrystalline ZnO/p-GaN Heterojunction” ,
IEEE ELECTRON DEVICE LETTERS, 33, 7(2012)
【20】 Seung-Ho Hwang, Tae-Hoon Chung, Byung-Teak Lee, “Study on the interfacial
layer in ZnO/GaN heterostructure light-emitting diode” , Materials Science and
Engineering B , 157,32-35 (2009).
【21】 Won Suk Han, Young Yi Kim, Bo Hyun Kong, Hyung Koun Cho, “Ultraviolet light
72
emitting diode with n-Zno:Ga/i-ZnO/p-GaN:Mg heterojunction” , Thin Solid Films ,
517, 5106-5109 (2009)
【22】 H.Y. XU, Y.C. LIU, Y.X. LIU, C.S. XU, C.L. SHAO, R. MU, “Ultraviolet
electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting
diodes”, Appl. Phys. B,80 , 871-874 (2005)
【23】 D.S. Liu,C.S. Sheu, “Aluminum-nitride codoped zinc oxide films prepared using a
radio-frequency magnetron cosputtering system.”, J. Appl. Phys. , 102,(2007).
【24】 R.K.Shukla,A.Srivastava,A.Srivastava,and K.C.Dubey,“Growth of transparent
conducting nanocrystalline Al doped ZnO thin films by pulsed laser
deposition”,J.Cryst.Growth,294,p.427(2006).
【25】 Z.Z.Ye,Q.Qian,G.D.Yuan,B.H.Zhao,D.W.Ma,“Effect of oxygen partial ratios on the
properties of Al-N co-doped ZnO thin films”,J.Cryst. Growth,274,pp. 178-182(2005).
【26】 K.P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, T. Balasubramanian, “Codoped
(AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: Acomparative
study”, Applied Surface Science ,255,2026-2029(2008)
【27】 Day-Shan Liu, Chia-Sheng Sheu, Ching-Ting Lee, “Aluminum-nitride codoped zinc
oxide films prepared using a radio-frequency magnetron cosputtering system”,
JOURNAL OF APPLIED PHYSICS, 102, 033516(2007)
【28】 Li-Wen Lai, Jheng-Tai Yan, Chia-Hsun Chen, Li-Ren Lou, Ching-Ting Lee,
“Nitrogen function of aluminum codoped ZnOfilms deposited using coputter
system”, J. Mater. Res., 24,No.7(2009)
【29】 Min Wei, Hong Deng , Xueran Deng, Chunrong Yang, Jinju Chen, “Structure and
optical properties of AlxZn1-xO alloys sol-gel technique”, Materials Research
Bulletin, 46,755-759(2011)
【30】 Jianfeng Sua, Chunhe Zang, Chunxiao Cheng, Qiang Niu, Yongsheng Zhang, Ke
Yu, “Structural , optical and electrical properties of Al-N codoped ZnOfilms by
RF-assisted MOCVD method”, Applied Surface Science, 257,160-164(2010)
【31】 L.J. Li, H. Deng , L.P. Dai, J.J. Chen, Q.L. Yuan, Y. Li. , “Properties of Al
heavy-doped ZnO thin films by RF magnetron sputter”, Materials Research Bulletin
,43 ,1456-1462(2008)
【32】 Bhupendra K. Sharma, Neeraj Khare , D. Haranath, “Photoluminescence lifetime of
Al-doped ZnOfilms in visible region”, Solid State Communications , 150,
2341-2345(2010)
73
【33】 D.K. Hwang, M.C. Jeong, J.M. Myoung, Appl. Surf. Sci. 225 (2004) 217
【34】 By Jae-Hong Lim, Chang-Ku Kang, Kyoung-Kook Kim, Il-Kyu Park, Dae-Kue
Hwang, Seong-Ju Park, “UV Electroluminescence Emission from ZnO Light
Emitting Diodes Grown by High-Temperature Radiofrequency sputtering”, Adv.
Mater, 18,2720-2724(2006)
【35】 Peiliang Chen, Xiangyang Ma, Dongsheng Li, Yuanyuan Zhang, and Deren Yang,
“Bidirectional direct-current electroluminescence from i-MgxZn1-xO/n-ZnO/SiOx
double barrier heterostructures on Si”, Appl. Phys. Lett. , 94,061110(2009)
【36】 Jieying Kong, Lin Li, Zheng Yang, and Jianlin Liu, “Ultraviolet light emissions in
MgZnO/ZnO double heterojunction diodes by molecular beam epitaxy”, J. Vac. Sci.
Technol. B , 28 , C3D10
【37】 Sheng Chu, Jianze Zhao, Zheng Zuo, Jieying Kong, Lin Li, “Enhanced output power
using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light
emitting diode”, J. Appl. Phys., 109, 123110(2011)
【38】 Lichun Zhang, Qingshan Li, Liang Shang, Zhongjun Zhang, Ruizhi Huang and
Fengzhou Zhao , “Electroluminescence from n-ZnO:Ga/p-GaN heterojunction
light-emitting diodes with different interfacial layer”, J. Phys. D: Appl. Phys,45
,485103(2012)
【39】 Po-Ching Wu, Hsin-Ying Lee, and Ching-Ting Lee , “Enhanced light emission of
double heterostructured MgZnO/ZnO/MgZnO in ultraviolet blind light-emitting
diodes deposited by vapor cooling condensation system”, Appl. Phys. Lett.,
100,131116(2012)
【40】 羅正忠,張鼎張, “半導體製程技術導論”,歐亞書局股份有限公司(2010)
【41】 J. R. Roth, “Industrial Plasma Engineering, Volume 1: Principles” Institute of
Physics Publishing Bristol and Philadelphia (1995).
【42】 莊達人,“VLSI製造技術”, 高立圖書股份有限公司 (1995).
【43】 D. S. Liu, F. C. Tsai, C. T. Lee, C. W. Sheu, “Properties of Zinc Oxide Films
Cosputtered with Aluminum at Room Temperature”, Jpn. J. Appl. Phys., 47, 3056
(2008).
【44】 T. Minami, “Transparent conducting oxide semiconductors for transparent
electrodes”, Semicond. Sci. Technol., 20, S35 (2005).
【45】 D. J. Leary, J. O. Barnes, A. G. Jordan, “Calculation of carrier concentration in
74
polycrystalline films as a function of surface acceptor state density: application for
ZnO gas sensors”, J. Electrochem. Soc., 29, 1382 (1982).
【46】 H. P. Maruska, J. J. Tietjen, “The preparation and properties of vapor-deposited
single-crystal-line GaN”, Appl. Phys. Lett., 15, 327 (1969).
【47】 M. A. Khan, J. N. Kutnia, D. T. Olson, M. Blasingame, A. R. Bhattarai, “Schottky
barrier photodetector based on Mg-doped p-type GaN films”, Appl. Phys. Lett., 63,
2455 (1993).
【48】 H. Morkoc, A. D. Catlo, R. Cingolani, “GaN-based modulation doped FETs and UV
detectors”, Solid-State Electronics, 46, 157 (1999).
【49】 B. P. Luther, S. D. Wolter, S. E. Mohney, “High temperature Pt Schottky diode gas
sensors on n-type GaN”, Sensors and Actuators B, 56 164 (1999).
【50】 . Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN/AlGaN
double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., 64, 1687
(1994).
【51】 游志樸主編, 林尚明, 葉逸彥, 嚴建國, “半導體材料” , 新文京開發股份有限公
司 (2003).
【52】 Wyckoff, R. W. G. , “Crystal Structures” , Interscience Publishers (1960).
【53】 W. F. Wu, B. S. Chiou, “Properties of radio-frequency magnetron sputtered ITO
films without in-situ substrate heating and post-deposition annealing”, Thin Solid
Films, 247, 201 (1994).
【54】 C. Caliendo, G. Saggio, P. Verardi and E. Verona, “Piezoelectric AlN Film for SAW
Devices Application”, IEEE, Ultrasonics symposium, pp. 249-252, (1993).
【55】 E. Janczak-Bienk, H. Jensen and G. Sorensen, Mater. Sci and Eng. A140, p. 696,
(1991).
【56】 S. M. Sze, and K. K. Ng, 2006, Physics of Semiconductor Devices, 3rd Edition, John
Wiley & Sons, Inc.
【57】 陳鼎堯,2008, “氧化鎂鋅鋁薄膜應用於氮化鋁鎵接觸之特性研究”,國立虎尾
科技大學光電與材料科技研究所碩士論文。
【58】 林俊興,“共濺鍍氧化銦鋅透明導電膜熱穩定性之研究”,國立虎尾科技大學光
電與材料科技研究所碩士論文 (2006).
【59】 莊翔鈞,“不同氣體環境熱處理氧化鋅緩衝層對共濺鍍薄膜特性影響之研究”,
75
國立虎尾科技大學光電與材料科技研究所碩士論文 (2008).
【60】 汪建民,“材料分析”,中國材料科學學會 (2005) .
【61】 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華科技 (2003).
【62】 H. B. Michaelson, “The work function of the elements and its periodicity”, J. Appl.
Phys., 48, 4729 (1977).
【63】 Y. W. Heo, D.P.Norton, S.J.pearton, ,“Origin of green luminescence in ZnO thin
film grown by molecular-beam epitaxy”, Journal of Applied physics ,
98,073502(2005)
【64】 Bixia Lin, Zhuxi Fu, Yunbo Jia, “Green luminescent center in undoped Zinc oxide
films deposited on silicon substrates”, Applied Physics Letters ,79,943 (2001)
【65】 林明德, “高功率AC LED交流電壓驅動特性研究”,國立中央大學光電科學研究
所,2007
【66】 Yow-Jon Lin, Chang-Da Tsai, Yen-Tang Lyu, Ching-Ting Lee, “X-ray
photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers”,
Applied Physics Letters, 77,687 (2000)
【67】 Huihui Huang, Guojia Fang, Yuan Li, Songzhan Li, Xiaoming Mo, Hao Long,
Haoning Wang, David L. Carroll, and Xingzhong Zhao , “Improved and color
tunable electroluminescence from n-ZnO/HfO2/p-GaN heterojunction light emitting
diodes”, Applied Physics Letters,100,233502(2012)
【68】 Hyunsu Kim , Changhyun Jin , Sunghoon Park , Wan In Lee , Chongmu Lee,
“Structure and luminescence properties of thermally ntrided Ga2O3 nanowires”,
Materials Research Bulletin ,48, 613– 617 (2013)
【69】 Y.W. Heo ,D.P. Norton ,S.J. Pearton , “Origin of green luminescence in ZnO thin
film growm by molecular-beam epitaxy”, Journal of Appled Phsics,98
,073502(2005)
【70】 Ju Young Lee, Jong Hoon Lee, Hong Seung Kim, Chung-Hyung-Soo Ahn, Hyung
Koun Cho ,Young Yi Kim ,Bo Hyun Kong , Ho Seong Lee, “A study on origin of
emission of the annealed n-ZnO/p-GaN heterostructure LED”, Thin Solid Films,517,
5157–5160(2009)
【71】 黃瑞皓, “利用氮化鋁-氧化鋅與氧化鎂-氧化鋅共濺鍍薄膜製作雙異質接面之研
究”, 國立虎尾科技大學光電與材料科技研究所,2012
【72】 Y. J. Zeng, Z. Z. Ye, J. G. Lu, L. P. Zhu, D. Y. Li, B. H. Zhao and J. Y. Huang,
“Effects of Al content on properties of Al–N codoped ZnO films”, Appl. Surf. Sci.
249, pp. 203-207 (2005).
【73】 B. M. Ataev, Ya. I. Alivov , V. A. Nikitenko , M. V. Chukichev , V. V. Mamedov,
S. Sh. Makhmudov, “n-ZnO/p-GaN/α-Al2O3 heterojunction as a promising blue light
emitting system”, J. Optoelectron. Adv. Mater., 5, 899 (2003)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔