(3.238.96.184) 您好!臺灣時間:2021/05/15 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林俊廷
研究生(外文):Jyun-Ting Lin
論文名稱:利用電漿化學氣相沉積二氧化鈦光觸媒薄膜分解水中環境賀爾蒙與細菌
論文名稱(外文):Titanium Dioxide Photocatalyst Films Deposited by PECVD to Decompose Environmental Hormone and Bacteria in Water
指導教授:莊賦祥莊賦祥引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:52
中文關鍵詞:電漿化學氣相沉積二氧化鈦大腸桿菌苯酚光催化
外文關鍵詞:PECVDTiO2methylene bluemethyl orangeE. coliphenolPhotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用電漿化學氣相沉積法(Plasma Enhance Chemial Vapor Deposition, PECVD)製備二氧化鈦光觸媒薄膜,使用氬氣(Ar)作為載氣,將鈦來源(四異丙烷鈦,Titanium(IV) isopropoxide, TTIP)輸送至混合槽並與氧氣(O2)做混合產生反應再導入腔體內,沉積於玻璃與不鏽鋼基板上並藉由調變電漿功率來探討不同電漿功率對薄膜品質的影響,以此觸媒做光催化降解亞甲基藍與甲基橙反應來研究其觸媒特性。藉由X光繞射儀(XRD)、紫外光-可見光光譜儀(UV-VIS Spectrum)量測結構分析薄膜特性及降解後的亞甲基藍與甲基橙光吸收率。

研究結果顯示,不鏽鋼基板在製程溫度25 ℃,製程壓力150 mTorr,電漿功率300 W,TTIP流量100 Sccm,氧氣流量15 Sccm,退火溫度500 ℃時間30分鐘下,有較佳的銳鈦礦(Anatase)結晶相峰值及光催化降解效率,XRD圖中可分別在A(101),(104),(200),(105)位置發現銳鈦礦峰值,在高功率UV LED Light(波長395 nm, 電壓50.2 v, 電流1.48 mA)均勻照射下,沉積在不銹剛基板上的二氧化鈦薄膜於1小時內降解亞甲基藍的降解率可達62.8%,9小時內降解甲基橙的降解率可達67.1%。

另外,分解水中環境賀爾蒙苯酚及抑制大腸桿菌生長實驗部份,因一般工業污水中含有有機污染物-苯酚,用一般傳統處理法難以將之去除,本研究藉由調配不同濃度從5 ppm、10 ppm到15 ppm的苯酚溶液,利用二氧化鈦光觸媒薄膜光催化降解苯酚化合物,在催化時間25小時後,最終成功將苯酚礦化成二氧化碳和水。

而大腸桿菌部份使用BCRC 11634菌株做測試,培養30 ml LB液態培養液置於37 ℃培養烤箱培養16小時後取3 ml做二氧化鈦光觸媒殺菌實驗,結果顯示在高功率UV LED Light(波長395 nm, 電壓47.7 v, 電流1.14 mA)照射下,可看出有二氧化鈦經紫外光照射後觸發光催化反應,經計數後E.Coli明顯減少許多,成功抑制大腸桿菌的生長。


This paper studies the plasma enhanced chemical vapor deposition (PECVD) Preparation of titanium dioxide photocatalyst film using argon (Ar) as the carrier gas, the source of titanium (4-isopropyl titanium, Titanium (IV) isopropoxide, TTIP) delivered to the mixinggroove and do mixed with oxygen (O2) reacts then into the body cavity, and deposited on glass and stainless steel substrate and by modulating the plasma power to explore the influence of the type of plasma power on the film quality, this catalyst Photocatalyticdegradation of methylene blue and methyl orange reaction to study the catalytic properties. UV - visible spectrometer (UV-Vis Spectrum) measurement structure by X-ray diffraction (XRD) analysis of film properties and the degradation of methylene blue and methyl orange light absorption rate.

The results showed that the stainless steel substrate in a process temperature of 25 ° C, the process pressure of 150 mTorr, plasma power of 300 W, the TTIP flow of 100 sccm, oxygen flow rate 15 sccm, annealing temperature of 500 ℃ under 30 minutes, preferably anatase (anatase) crystalline phase peak and the efficiency of the photocatalytic degradation XRD FIG respectively in A (101) (104) (200) (105) position anatase peak in the high-power UV LED light (wavelength 395 nmvoltage 50.2 v current of 1.48 mA), uniform light, titanium dioxide thin films deposited on stainless steel substrate degradation rate of degradation of methylene blue in 1 hour up to 62.8%, the degradation rate of up to 9 hours degradation of methyl orange67.1%.

In addition, the decomposition of water environmental hormone phenol and inhibit the growth of E. coli experimental part, due to the general industrial wastewater containing organic pollutants - phenol, traditional processing method is difficult to be removed, the study by to deploy different concentrations from 5ppm, 10 ppm to 15 ppm of phenol solution, titanium dioxide photocatalyst film photocatalytic degradation of phenol compounds in the catalytic time 25 hours later, the ultimate success of the phenol mineralization into carbon dioxide and water.
E. coli part of the BCRC 11634 strain test, culture placed in 30 ml LB liquid culture medium and cultured at 37 ° C oven take 3 ml culture 16 hours after the titanium dioxide photocatalyst antibacterial experiments, the results show the high power UV LED Light (wavelength 395 nmvoltage of 47.7 V, current of 1.14 mA), we can see uniform irradiation the titania catalyst irradiated with UV light photocatalytic reaction is triggered by the count after E. coli significantly reduce the number of successfully inhibited the growth of E. coli.


摘要....i
Abstract....ii
目錄....v
表目錄....viii
圖目錄....ix
第一章 緒論....1
1.1 前言....1
1.2研究動機....1
第二章文獻回顧....3
2.1化學氣相沉積法原理[2]....3
2.2二氧化鈦光觸媒原理....5
2.2.1二氧化鈦晶體結構....5
2.2.2 光觸媒反應機制....6
2.3 水中有機污染物探討....7
2.3.1染料廢水特性....7
2.3.2酚類化合物特性....10
2.4光觸媒殺菌機制....11
2.4.1大腸桿菌....11
2.4.2光觸媒殺菌探討....12
第三章 實驗方法與步驟....13
3.1實驗材料與藥品....13
3.2 實驗設備與實驗方法....14
3.2.1 PECVD電漿增強化學氣相沉積系統....14
3.2.2基板清洗....16
3.2.3亞甲基藍液降解實驗....18
3.2.4甲基橙液降解實驗....20
3.2.5苯酚溶液降解實驗....21
3.2.6大腸桿菌降解實驗....21
3.3量測儀器原理....24
3.3.1 ?-step薄膜表面輪廓儀....24
3.3.2 Contact Angle分析....24
3.3.3 紫外-可見光光譜儀(UV-VIS Spectrum)....25
3.3.4低掠角X光繞射儀(Grazing incident X-ray diffraction pattern ; GIXRD)....25
第四章 結果與討論....27
4.1不同電漿功率對二氧化鈦晶相影響....27
4.2光觸媒光催化降解亞甲基藍之探討....29
4.2.1亞甲基藍吸附實驗....29
4.2.2亞甲基藍光解實驗....30
4.2.3光催化降解亞甲基藍實驗....31
4.3光觸媒光催化降解甲基橙之探討....33
4.3.1甲基橙吸附實驗....33
4.3.2甲基橙光解實驗....34
4.3.3 光催化降解不同濃度甲基橙實驗....35
4.4光觸媒光催化降解苯酚之探討....39
4.5光觸媒光催化抑制大腸桿菌之探討....42
第五章 結論....45
參考文獻....47
Extended Abstract....50

[1]蘇俊鐘 ”光觸媒(Photocatalyst)”, NCHC奈米科學研究小組, 2003.
[2]高濂, 鄭珊, 張青紅著 “奈米光觸媒”, 五南圖書出版股份有限公司, 2004.
[3]Harada H., Ueda T. Chem. Phys. Lett., 106, 229, 1984.
[4]Frank S. N., Bard A. J., J. phys. Chem., 81, pp.1484-1488, 1977.
[5]Frank S. N., Bard A. J. “Photochemistry of colloidal semiconducting iron oxide polymorphs”, J. Phys. Chem, , 91, pp.5076-5083, 1987.
[6]Bui T.H., Felix C., Pigeot-Remy. S., Herrmann J.M., Lejeune P., Guillard C. “Photocatalytic Inactivation of Wild and Hyper-Adherent E. Coli Strains in Presence of Suspended or Supported TiO2. Influence of the Isoelectric Point of the Particle Size and of the Adsorptive Properties of Titania”, Volume 11, No.3, pp.510-518, 2008.
[7]Dong Suk Kim, Seung Yeop Kwak “Photocatalytic Inactivation of E. coli with a Mesoporous TiO2 Coated Film Using the Film Adhesion Method”, 43(1), pp.148-151, 2009.
[8]Li B.J., Yang D.H., Wu S.Q., Li B.S., Meng H., Jiang S.P., Liu G.J., Zhao Y.H., Cui H.B., Zhou X.M., Zhong Z.H. “Application of nano-sized TiO2 photocatalysis to air purification and sterilization”, Nov.42(11):831-5, 2008.
[9]Le Thi Tuyet Nhung, Hirofumi Nagata, Akira Takahashi, Mutsumi Aihara, Toshihiro Okamoto, Takaaki Shimohata, Kazuaki Mawatari, Masatake Akutagawa, Yhosuke Kinouchi, Masanobu Haraguchi “Sterilization effect of UV light on Bacillus spores using TiO2 films depends on wavelength”, pp.53-58, 2012.
[10]Yan tao Hu, Shu qing Sun, Zheng ying Xi, Chun yan Duan, Meng Yan “TiO2 thin films prepared from aqueous solution and their sterilizing capability”, Vol.7, No.1, pp.49-52, 2006.
[11]Takashima H., Yamanashi U., Kofu Iida Y., Nakamura K., Kanno Y. ”Microwave Sterilization by TiO2 Filter Coated with Ag Thin Film”, Vol.2, pp.1413-1418, 2006.
[12]Tadashi Matsunaga, Ryozo Tomoda, Toshiaki Nakajima, Hitoshi Wake “Photoelectrochemical sterilization of microbial cells by semiconductor powders”, vol.29, Issues 1–2, pp.211-214, 1985.
[13]Kayano Sunada, Yoshihiko Hikuchi, Kazuhito Hashimoto, eta1 “Batericidal and detoxification effects of TiO2”, thin film photocatalysts, Env Sci Techn, 32(5), pp.726, 1998.
[14]陳建霞 “掺雜鐵的奈米二氧化鈦光催化苯酚的研究”, 內蒙股石油化工, 2008.
[15]吳大清, 廖桂儀, 袁鵬 “氧化鐵礦物催化分解苯酚的動力學速率及其產物特徵”, 礦物岩石地球化學通報, vol.25, No.4, 2006.
[16]彭曉春, 陳新庚, 黃鵠, 李明光 “半導體二氧化鈦光催化技術在水處理中的應用”, INDUSTRIAL WATER & WASTE WATER, Vol.33, No.2, 2002.
[17]Rashed M. N., El Amin A.A. “Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources”, International Journal of Physical Sciences, Vol.2(3), pp.073-081, 2007.
[18]Laoufi N.A., Tassalit D., Bentahar F. “The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor”, Global NEST Journal, vol.10, No.3, pp.404-418, 2008.
[19]Dong Lyun Cho, Ho Min, Jong Ho Kim, Geun Seop Cha, Gwi Sung Kim, Byung Hoon Kim, Seung Ho Ohk “Photocatalytic Characteristics of TiO2 Thin Films Deposited by PECVD”, J. Ind. Eng. Chem., Vol.13, No.3, pp.434-437, 2007.
[20]李憶興 “影像人才訓練班-薄膜技術課程”, 明新光電系, 2008.
[21]邱欣慶 “二氧化碳雷射輔助電漿激發式化學氣相沈積非晶形二氧化矽薄膜”, 國立中央大學光電科學研究所碩士論文, 98/6.
[22]樊美公 “光化學基本原理與光子學材料科學”, 科學出版社.
[23]Gratzel M., Heterogeneous Photochemical Electron Transfer, CRC Press, Baton Rouge, FL, 1998.
[24]Che Hsin Yang, Chao Chen Yang, Journal of Chen Min college 6, 2002.
[25]Frank S. N., Bard A. J. “Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer ”, J. Phys. Chem,vol.81, pp.1484-1486, 1977.
[26] Laoufi N.A., Tassalit D.,Bentahar F. “The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor”, Global NEST Journal, Vol.10, No.3, pp.404-418, 2008.
[27]Craig S. Turchi, David F. Ollis “Photocatalytic Degradation of Organic Water Contaminants:Mechanisms Involving Hydroxyl Radical Attack”, Journal of Atalysis vol.122, pp.178-192, 1990.
[28]何振武 “製作及應用複合Chitosan/TiO2材料去除甲基橙及甲基藍之研究”, 國立雲林科技大學環境與安全衛生工程系碩士班碩士論文, 98/6.
[29]何志軒, 陳俊成, 楊禎祿 “有機反應性染料之氧化去色反應特性”, 工業污染防治廢水處理技術, 第108期, 2008.
[30]陳淳圓, 官文惠, 黃富昌 “不同外加輔助能量形式對二氧化錳處理亞甲基藍染料廢水之影響”, 台灣環境資源永續發展研討會, 2009.
[31]郭畊甫 “不同TiO2鍍膜系統對亞甲基藍光降解與親水性之影響”, 大同大學材料工程研究所碩士論文, 2009.
[32]Norma R., De Tacconi, Judith Carmona, Krishnan Rajeshwar “Reversibility of Photoelectrochromism at the TiO2/Methylene Blue Interface”, J. Electrchem. Soc., vol.144, pp.2486, 1997.
[33]陳婉貞 “二氧化鈦擔載碳材用於甲基橙光降解之效能”, 國立成功大學化學工程學系碩士論文, 98/7.
[34]Comninellis Ch., Pulgarin C. ”Anodic Oxidation of Phenol for wastewater Tratment”, Applied Electrochemistry, vol.21, pp703-708, 1991.
[35]Belhadj N., Savall A. ”Electrochemical Degradation of Phenol in Aqueous Solution on Bismuth Doped Lead Dioxide: A Comparison of the Activities of Various Electrode Formulations”, Appl. Electrochem, vol.29, pp.277-283, 1999.
[36]Bougheloum Ch., Messalhi A. ”Photocatalytic Degradation of Benzene Derivatives on TiO2 Catalyst”, Physics Procedia, vol.2, pp.1055-1058, 2008.
[37]田依林, 李桂敏, 燕启社 ”Fenton试剂氧化水中芳香族化合物的机理”, 污染防治技术, vol.16(1), pp.12-15, 2003.
[38]陳雲華, 周鑫玉, 潘玲 ”臭氧氧化去除水中芳香族化合物機理初探”, 化工環保, vol.18(2), pp.74-78, 1998.
[39]張轶, 黄若男, 王晓敏, 王齐, 丛燕青 “TiO2光催化联合技术降解苯酚机制及动力学”, 环境科学, vol.34, No.2, 2013.
[40]Hiromichi Hayashi, Kazuo Torii “Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions”, J. Mater. Chem., vol.12, pp.3671-3676, 2002.
[41]Seung Yong Chae, Myun Kyu Park, Sang Kyung Lee, Taek Young Kim, Sang Kyu Kim, Wan In Lee “Preparation of Size-Controlled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films”, Chem. Mater., vol.15(17), pp.3326–3331, 2003.
[42]王嘉慶 “TiO2光觸媒對大腸桿菌殺菌作用之探討”, 國立臺灣大學化學工程學研究所碩士論文, 93/7.
[43]鐘啟仁, 林欣熠, 謝國章, 何主亮 “不銹鋼之光觸媒抗菌表面處理”, 94.
[44]Rincon A.G., Pulgarin C. “Photocatalytical Inactivation of E. coli: Effectof (Continuous–Intermittent) Light Intensity and of (Suspended–Fixed) TiO2 Concentration,” Appl. Cataly. B: Environ., vol.44, pp.263-284, 2003.
[45]张爱平, 方炎 “甲基橙-银胶体系pH和氯离子效应的光谱研究”, 物理學報, vol.56, No.1, 2007.
[46]劉全得 “偶氮染料之二氧化鈦光催化脫色反應特性研究”, 國立高雄第一科技大學環境與安全衛生工程系碩士論文, 94/2.
[47]孙振范, 李玉光 “TiO2纳米膜上吸附态甲基橙的光催化降解反应活性研究”, 化學學報, vo1.60, No.11, pp.1965-1972, 2002.
[48]Cezar Catrinescu, Carmen Tesdosiu, Matei Macoveanu, et al. ”Catalytic wet peroxide oxidation of phenol over Fe2ex2 changed pillared beidellite”, Water research, vol.37, pp.1154-1160, 2003.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top