(3.230.154.160) 您好!臺灣時間:2021/05/08 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李柏勳
研究生(外文):Bo-Shiun Li
論文名稱:發展離心平台上快速血漿分離及混和技術
論文名稱(外文):Development of Centrifugal Platform for Rapid Separation and Mixing of Blood Plasma
指導教授:郭如男
指導教授(外文):Ju-Nan Kuo
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:92
中文關鍵詞:離心平台血漿分離混合微流體COMSOLPDMS
外文關鍵詞:Centrifugal platformMicrochannelMixingPlasma separation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是在微流體離心平台上發展快速血漿分離及混合技術,設計一組微流體系統包括血漿分離模組、微閥門及血漿混合模組並加以整合。首先將血液注入到血漿分離模組的注入槽,當光碟旋轉至第一段轉速時進行血漿分離,分離完的血漿與DI water或試劑使用第二段轉速突破微閥門至血漿混合模組加以混合以利後續的疾病因子檢測及相關的研究。本研究先使用有限元素分析軟體COMSOL來模擬血漿分離及血漿混合的流場分析,模擬出來的結果再經由實驗驗證其正確性。晶片製作是採用微機電製程,先製造出SU-8母模,再利用高分子材料PDMS使用澆注的方式進行翻模,之後將晶片利用氧電漿的方式接合在光碟片上即完成微流體光碟片。實驗顯示血漿分離模組可在光碟2000 rpm,血球容積比6 %情況在5至6秒達到95 %分離效率;所設計的血漿混合模組,以Type 1的混合效率最高,在轉速2200 rpm時5秒可達到96.4 %的混合效率。

This paper presents a new lab-on-CD microstructure capable of directly separating plasma from the whole blood into different reservoirs and performing plasma mixing functions. We propose a CD microfluidic platform, including a microchannel network consisting of a plasma separation microchannel network and a mixer microchannel network. As the disk rotates, the centrifugal force causes the separation of blood cells and plasma because of their different densities. The blood cells enter a collection chamber, while the plasma flows to the downstream mixer microchannel network. Numerical simulations are performed to investigate the flow characteristics and mixing performance of three CD microfluidic mixers. The results show that given an appropriate specification of the microchannel geometry and a CD rotation speed of 2000 rpm, 95% separation efficiency is achieved within 5-6 s for diluted blood with a hematocrit of 6%, and a mixing efficiency of more than 96.4% can be obtained within 5 s at an angular frequency of 2200 rpm.

摘要...i
Abstract...ii
致謝...iii
目錄...iv
表目錄...vii
圖目錄...viii
符號說明...xii
第一章 緒論...1
1.1前言...1
1.2 研究動機與目的...2
1.3 文獻回顧...4
1.3.1 血漿分離...4
1.3.2 微閥門...12
1.3.3 微混合器...14
第二章 光碟微流體平台設計...22
2.1 血液的組成...22
2.2 光碟微流體平台受力分析...24
2.3 整合型晶片設計...25
2.4 有限元素分析軟體(COMSOL)簡介...27
2.4.1 COMSOL模型建立...29
2.4.2 COMSOL使用功能介紹...30
2.5 有限元素分析之基本假設...32
2.6 血漿分離模組模擬分析...33
2.7 微閥門的相關理論與設計...35
2.8 血漿混合模組設計與分析...39
第三章 實驗材料與流程...44
3.1 實驗流程...44
3.2 微流道設計與光罩製作...45
3.3 實驗設備...46
3.4 黃光微影製程...51
3.4.1 矽晶圓基板清洗...52
3.4.2 塗佈SU-8光阻...53
3.4.3 軟烤...54
3.4.4 曝光...55
3.4.5 曝後烤...56
3.4.6 顯影...57
3.4.7 硬烤...57
3.5 高分子材料PDMS晶片製作...58
3.5.1 PDMS材料特性...58
3.5.2 PDMS晶片製作...59
3.6 PDMS與光碟片之接合...60
3.7 實驗藥品與影像處理...63
第四章 結果與討論...66
4.1 血漿分離流道模擬結果...66
4.2 血漿分離模組實驗結果...67
4.3 血漿混合流道模擬結果...70
4.4 血漿混合模組實驗結果...73
4.5 凝血酶原時間(Prothrombin Time, PT)初步測試...76
第五章 結論...79
參考文獻...81
英文論文大綱...87
簡歷...91


[1]B. S. Harald, “Flow cytometer for measurement of the light scattering of viral and other submicroscope particles,” Cytometry Part A, vol. 57A, pp. 94-99, 2004.
[2]M. A. Clain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometer of Escherichia coli on Microfluidic Devices,” Analytical Chemistry, vol. 73, pp. 5334-5338, 2001.
[3]A. Wolff, I. R. P. Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, P. Kutter, and P. Telleman, ”Integrating advanced functionality in a micro fabricated high-throughput fluorescent-activated cell sorter,” Lab on a Chip, vol. 3, pp. 22-27, 2003.
[4]P. S. Dittrich and P. Schwille, “An Integrated Microfluidic System for Reaction, High-Sensitivity Detection, and Sorting Fluorescent Cells and Particles,” Analytical Chemistry, vol. 75, pp. 5767-5774, 2003.
[5]C. R. Poulsen, C. T. Cilbertson, S. C. Jacobson, and J. M. Ramsey, “Static and Dynamic Acute Cytotoxicity Assays on Microfluidic Devices,” Analytical Chemistry, vol. 77, pp. 667-672, 2005.
[6]A. Manz, N. Graber, and H. M. Widmer, “Miniaturized Total Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[7]N. Vandelli, D. Wroblewski, M. Velonis, and T. Bifano, “Development of a MEMS microvalve array for fluid flow control,” Journal of Microelectromechanical Systems, vol. 7, no. 4, pp. 395-403, 1998.
[8]K. S. Yun, I. J. Cho, J. U. Bu, C. J. Kim, and E. Yoon, “A surface-tension driven micropump for low-voltage and low-power operations,” Journal of Microelectromechanical Systems, vol. 11, no. 5, pp. 454-461, 2002.
[9]Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, “Ultrasonic micromixer for microfluidic system,” Sensors and Actuators A: Physical, vol. 93, pp. 266-272, 2001.
[10]S. Lai, S. Wang, J. Luo, L. J. Lee, S. T. Yang, and M. J. Madou, “Design of a Compact Disk-like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay,” Analytical Chemistry, vol. 76, no. 7, pp. 1832-1837, 2004.
[11]X. Y. Peng, P. C. H. Li, H. Z. Yu, M. Parameswaran, and W. L. Chou, “Spiral microchannels on a CD for DNA hybridizations,” Sensors and Actuators B: Chemical, vol. 128, no. 1, pp. 64-69, 2007.
[12]S. W. Lee, J. Y. Kang, I. H. Lee, S. S. Ryu, S. M. Kwak, K. S. Shin, C. Kim, H. I. Jung, and T. S. Kim, “Single-cell assay on CD-like lab chip using centrifugal massive single-cell trap,” Sensors and Actuators B: Chemical, vol. 143, no. 1, pp. 64–69, 2008.
[13]C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, and W. Menz, “Separation of blood in microchannel bends,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, CA, USA, September 1-5, 2004.
[14]J. Park, K. Cho, C. Chung, D. C. Han, and J. K. Chang, “Continuous plasma separation form whole blood using microchannel geometry,” IEEE Microtechnologies in Medicine and Biology, Hawaii, May 12-15, 2005.
[15]S. Haeberle, T. Brenner, R. Zengerle, and J. Ducre’e, “Centrifugal extraction of plasma from whole blood on a rotating disk,” Lab on a Chip, vol. 6, pp. 776-781, 2006.
[16]S. Yang, A. Undar, J. D. Zahn, “A microfluidic device for continuous, real time blood plasma separation,” Lab on a Chip, vol. 6, pp. 871-880, 2006.
[17]P. Sethu, A. Sin, M. T. Toner, “Microfluidic diffusive filter for apheresis (leukapheresis),” Lab on a Chip, vol. 6, pp. 83–89, 2006.
[18]J. Steigert, T. Brenner, M. Grumann, L. Riegger, S. Lutz, R. Zengerle, J. Ducree, “Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk,” Biomed Microdevices, vol. 9, pp. 675-679, 2007.
[19]J. Zhang, Q. Guo, M. Liu, J. Yang, “A lab-on-CD prototype for high-speed blood separation, ” Journal of Micromechanics and Microengineering, vol. 18, pp. 125025-125030, 2008.
[20]江葦玲,“發展離心平台上血漿傾注與定量之技術”,逢甲大學化學工程學系,碩士論文,2010。
[21]C. T. Huang, P. N. Li, C. Y. Pai, T. S. Leu, C. P. Jen, “Design and Simulation of a Microfluidic Blood-Plasma Separation Chip Using Microchannel Structures,” Separation Science and Technology, vol. 45, pp. 42-49, 2010.
[22]Y. H. Zhan, J. N. Kuo, “Dimensions and capillary effects of microfluidic channel for blood plasma separation,” Proceedings of the 7th IEEE NEMS, Kyoto, Japen, March 5-8, 2012.
[23]P. F. Man, C. H. Mastrangelo, M. A. Burns, D. T. Burke, “In Microfabricated capillarity-driven stop valve and sample injector,” IEEE Microsystem Simulation Modeling Conference, Santa Clara, U. S. A, April 8-10, 1998.
[24]M. J. Madou, L. J. Lee, S. Daunert, S. Lai, C.H. Shih, “Design and fabrication of CD-like microfluidic platforms for diagnostic: microfluidic functions,” Biomedical Microdevices vol.3, no. 3, pp. 245-254, 2001.
[25]C. Lu, Y. Xie, Y. Yang, C. G. Koh, Y. Bai, L. J. Lee, “New valve and bonding designs for microfluidic biochips containing proteins,” Analytical Chemistry, vol. 79, pp. 994-1001, 2007.
[26]J. Kim, H. Kido, Roger. H. Rangel, Marc J. Madou, “Passive flow switching valves on a centrifugal microfluidic platform,” Sensor and Actuator B: Chemical, vol. 128, pp. 613-621, 2008.
[27]A. Deshmukh, D. Liepmann and A. P. Pisano, “Continuous Micromixer with Pulsatile Micropumps,” IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, U. S. A. , June 2-7 2000.
[28]A. D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides1, “Chaotic Mixer for Microchannels,” Science, vol. 295, pp. 25, 2002.
[29]F. Schonfeld, S. Hardt, “Simulation of Helical Flows in Microchannels,” AIChE Journal, vol. 50, pp. 4-7, 2004.
[30]N. T. Nguyen and Z. Wu, “Micromixers: a Review,” Journal of Micromechanics and Microengineering, vol. 15, pp. 1-16, 2005.
[31]J. T. Yang, K. W. Lin, “Mixing and separation of two-fluid flow in a micro planar serpentine channel,” Journal of Micromechanics and Microengineering, vol. 16, pp. 2439–2448, 2006.
[32]N. S. Lynn, and D. S. Dandy, “Geometrical optimization of helical flow in grooved micromixers,” Lab on a Chip, vol. 7, pp. 580–587, 2007.
[33]S. Y. Yang, J. L. Lin, and G. B. Lee, “A vortex-type micromixer utilizing pneumatically driven membranes,” Journal of Micromechanics and Microengineering, vol. 19, no. 3, pp. 035020, 2009.
[34]S. Hossian, M. A. Ansari, and K. Y. Kim, “Evaluation of the mixing performance of three passive micromixers,” Chemical Engineering Journal, vol. 150, pp. 492-501, 2009.
[35]L. R. Jiang and J. N. Kuo, “Design optimization of micromixer with square-wavemicrochannel on compact disk microfluidic platform,” Microsystem Technologies, 2013.
[36]王文憲,“人體生理學”,合記圖書,pp. 602-611,1994。
[37]王士豪,“超音波技術探討血液濃度、血流、與血栓形成的關係”,中原大學醫學工程學系,碩士論文,2002。
[38]樓迎統、陳君祝、黃榮棋、王錫五合著,“實用生理學”,匯華圖書出版有限公司,2000。
[39]M. Toner and D. Irimia, “Blood-on-a-chip,” Annual Review of Biomedical Engineering, vol. 7, pp. 77-103, 2005.
[40]邱繼鋒,“血液在表面張力驅動微流道內之分析”,國立台灣大學工學院應用力學研究所,碩士論文,2007。
[41]金佩傑,應用力學:動力學,三民出版社,台北,民國九十四年。
[42]李輝煌,ANSYS工程分析基礎與觀念,高立圖書有限公司,台北,民國九十八年。
[43]S. Lai, S. Wang, J. Luo, L. J. Lee, S. T. Yang and Marc J. Madou “Design of Compact Disk-like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay,”Analytical Chemistry, vol. 76, pp. 1832–1837, 2004.
[44]H. He, Y. Yuan, W. Wang, N. R. Chiou, Arthur J. Epstein and L. James Lee, “Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay,” biomicrofluidics, vol. 3, pp. 22401-22417, 2009.
[45]L. AKESSO, “Datasheet: GM 1070, Gersteltech Ltd. ,” 2005.
[46]A. Norris, “Silicons: ideal material solutions for the photovoltaic industry,” Photovoltaics International’s 2nd Event Supplement, pp. 11-12, 2009.
[47]A. J. Quick, “On the Relationship Between Complement and Prothrombin,” Journal Immunology, vol. 2, 87-97, 1935.
[48]I. Horii and M. Kurata, “Blood coagulation tests in toxicological studies - review of methods and their significance for drug safety assessment”, The Journal of Toxicological Sciences, vol. 29 , pp.13-32, 2004.
[49]吳家慧,“發展離心式凝血酶原時間與免疫反應檢測平台”,逢甲大學化學工程學系,碩士論文,2010。
[50]C. H. Shih, C. H. Lu, J. H. Wu, C. H. Lin, J. M. Wang, and C. Y. Lin, “Prothrombin time tests on a microfluidic disc analyzer,” Sensors and Actuators B, vol. 161, pp. 1184–1190, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔