(3.210.184.142) 您好!臺灣時間:2021/05/13 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林靜修
研究生(外文):Ching- Sau Lin
論文名稱:以C4F8與C3F8先驅物製備疏水疏油碳氟化合物薄膜
論文名稱(外文):Hydrophobic and Oleophobic Fluorocarbon Films Prepared Using C4F8 and C3F8 Precursors
指導教授:方昭訓
指導教授(外文):Jau-Shiung Fang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:112
中文關鍵詞:疏水疏油碳氟化合物C3F8C4F8類鑽石
外文關鍵詞:DLCC3F8C4F8HMDSOa:C-Fhydrophobicoleophobic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:610
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
近年來觸控式 3C 產品盛行,在觸控面板方面,人類的皮脂分泌與汗腺分泌將影響面板清潔。因此開始有大量研究疏水和疏油的材料,使產品具備自行清潔的能力,在封裝方面,也可以利用疏水特性,避免晶體直接碰觸水及潮濕的地方而造成氧化。在生活用品上,相關應用在衣物和汽車上擋風玻璃…等,都可以有疏水功能,使生活更便利。
本論文研製高疏水/疏油薄膜,實驗利用電漿輔助化學氣相沉積疏水/疏油薄膜,先驅物使用乙炔 (C2H2)、八氟環丁烷(C4F8)、八氟丙烷 (C3F8)、六甲基二矽氧烷 (HMDSO) 和氧氣 (O2) 以不同流量、功率以及氬氣流量來探討表面疏水/疏油性質與表面形貌。薄膜特性利用原子力顯微鏡 (AFM) 量測表面粗糙度,以UV/VIS光譜儀量測穿透率,場發射掃描式電子顯微鏡 (FE-SEM) 觀察薄膜表面的微結構,紅外線光譜儀 (FTIR) 量測鍵結,然後再以化學分析電子儀分析 (ESCA) 進一步分析鍵結特性。
實驗結果顯示使用八氟環丁烷 (C4F8) 100 sccm 與氬氣1000 sccm 時,功率900 W 所製之疏水接觸角為114°,疏油為43°,穿透率為94.6 %,鍵結分析結果得知較高之疏水性質源自C=CF 鍵與-CF2鍵結。而以100 sccm八氟丙烷 (C3F8) 加入20 sccm氧氣與氬氣1000 sccm 時,功率600 W所製程薄膜疏水接觸角為113°,疏油為45°,穿透率為94.5 %,鍵結分析結果得知薄膜產生的鍵結有:CF2、CF、C-C、C-CF以及C-O鍵結。而100 sccm 八氟環丁烷C4F8加入HMDSO 50 sccm在功率低時,水接觸角為103°,油接觸角30°;而100 sccm 八氟丙烷C3F8加入50 sccm HMDSO在功率低時,水接觸角為110°,油接觸角33°。實驗結果顯示表面結構改變及化學鍵結所產生,兩者必須同時共存才使得疏水/疏油接觸角提升。


Fluorinated carbon films were deposited by plasma assisted chemical vapor deposition using C2H2, C4F8, C3F8, hexamdethyldisiloxane (HMDSO), Ar and O2 gases, and the oleophobic and hydrophobic properties were evaluated. The surface characteristics of the films were examined by static contact angle measurement (CA), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and x-ray photoelectron spectroscopy (XPS). The results showed that the film deposited in a mixture of 100-sccm-C4F8, 20-sccm-C2H2 and Ar at an RF power of 900 W had a water contact angle of 114°, hexadecane (oil) contact angle of 43°, and transmittance of 94.6%. The film deposited in a mixture of 100-sccm-C3F8, 20-sccm-C2H2, 20-sccm-O2 and Ar at an RF power of 600 W had a water contact angle of 113° and transmittance of 94.5%. In addition, AFM analysis shows that possible ion bombardment from Ar plasma can increase surface roughness. Fourier transform infrared spectrophotometer confirmed the high hydrophobic and transmittance arisen from the presence of –CFx (x=1, 2, 3), C-CF groups in the films. XPS results further revealed that the films contained mainly CF, C-CF, and CF2 bondings. The high oleophobicity was attributed to the further lowering of surface energy of the film because of the presence of fluoropolymer. The file with oleophobic and hydrophobic surfaces requires the adjustments of surface microgeometries and surface chemistry.

中文摘要.....................................................i
Abstract...............................................iii
誌謝....................................................v
表目錄..................................................ix
圖目錄...................................................x
第一章 前言...............................................1
1-1研究背景...............................................1
1-2疏水與疏油表面製備和現況..................................2
1-3研究目的...............................................3
1-4論文主要架構............................................3
第二章 文獻回顧............................................5
2-1超疏水介紹..............................................5
2-1.1蓮花效應..............................................5
2-1.2超疏水原理............................................6
2-2.1表面粗糙度理論.........................................8
2-2.3製備表面疏糙度方式.....................................11
2-2.4製備疏水薄膜文獻介紹....................................14
2-3.1 提升SiO2薄膜方式......................................16
第三章 實驗方法與儀器原理.....................................21
3-1實驗材料................................................21
3-1.1實驗先驅物............................................21
3-1.2基材.................................................22
3-2實驗流程................................................23
3-2.1電漿聚合反應...........................................23
3-2.2實驗步驟..............................................24
3-3電漿輔助化學氣相反應(PECVD)原理............................26
3-4分析設備及原理...........................................28
3-4.1物理性質量測...........................................28
3-4.2薄膜表面特性量測........................................30
3-4.3化學性質量測...........................................31
第四章.....................................................41
4-1實驗目的................................................41
4-2實驗步驟................................................41
4-3結果與討論..............................................43
4-3.1以C4F8+O2蝕刻法增進SiO2表面粗糙度之性質...................43
4-3.2以C4F8+C2H2為先驅物製備薄膜之性質........................45
4-3.3以C4F8+C2H2+HMDSO為先驅物製備薄膜之性質 ..................54
4-3.5以C3F8+C2H2為先驅物製備薄膜之性質........................65
4-3.6以C3F8+C2H2+O2為先驅物製備薄膜之性質.....................71
4-3.7以C3F8+C2H2+HMDSO為先驅物製備薄膜之性質..................82
4-3.8 C4F8與C3F8色差值量測 ..................................91
第五章 結論................................................95
參考文獻...................................................98
Extended Abstract........................................106
簡歷.....................................................112


[1]. Cassie, B. D., Baxter, S., “Wettability of porous surfaces”, Trans. Faraday Soc., 40, 546-551 (1944).
[2]. Tsujii, K., Yamamoto, T., Onda, T., Shibuichi, S., “Super oil-repellent surfaces”, Angew. Chem., 36, 1011-1012 (1997).
[3]. Nakajima, A., Fujishima, A., Hashimoto, K., Watanabe, T., “Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate”, Adv. Mater. 11, 1365-1368 (1999).
[4]. Nakajima, A., Abe, K., Hashimoto, K., Watanabe, T., “Preparation of hard super-hydrophobic films with visible light transmission”, Thin Solid Films 376, 140-143 (2000).
[5]. Morra, M., Occhiello, E., Garbassi, F., “Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene)”, Langmuir 5, 872-876 (1989).
[6]. Shang, H. M., Wang, Y., Limmer, S. J., Chou, T. P., Takahashi, K., Cao, G. Z., “Optically transparent superhydrophobic silica-based films”, Thin Solid Films, 472, 37-43 (2005).
[7]. Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L., Zhu, D., “Electrochemical deposition of conductive superhydrophobic zinc oxide thin films”, J. Phys. Chem. B, 107, 9954-9957 (2003).
[8]. J. Y. Shiu, C. W. Kuo, P. Chen, C. Y. Mou, “Fabrication of Tunable Superhydrophobic surfaces by Nanosphere Lithography”, Chemistry Materials, vol.16, no.4, pp.561-563 (2004).
[9]. D. Oner, T. J. McCarthy,“Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability”, Langmuir, vol.16, pp.7777-7782 (2000).
[10].M. Ma, Y. Mao, M. Gupta, K. K. Gleason, G. C. Rutledge, “Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition”, Macromolecules, vol.38, pp.9742-09748 (2005).
[11].Nakajima, A., Abe, K., Hashimoto, K., Watanabe, T., “Preparation of hard super-hydrophobic films with visible light transmission”, Thin Solid Films, 376, 140-143 (2000).
[12].Onda, T., Shibuichi, S., Satoh, N., Tsujii, K., “Super-water-repellent fractal surfaces”, Langmuir, 12, 2125-2127 (1996).
[13].A. Synytska, D. Appelhans, Z.G. Wang, F. Simon, F. Lehmann, M. Stamm, K.Grundke, “Perfluoroalkyl End-Functionalized Oligoesters:  Correlation between Wettability and End-Group Segregation”Macromolecules 40-297 (2007).
[14].W. Barthlott, C. Neinhuis, “Purity of the sacred lotus,or escape from contamination in biological surfaces”, Planta , vol.202, pp.1-8 (1997).
[15].L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, “Super-Hydrophobic Surfaces : From Natural to Artificial”, Advanced Materials, vol.14, no.14, pp.1857-1860 (2002).
[16].C. Neinhuis, W. Barthlott, “Characterization and Distribution of Water- repellent, Self-cleaning Plant Surfaces”, Annals of Botany, vol.79, pp.667-677 (1997).
[17].A. Otten, S. Herminghaus, “How Plants Keep Dry : A Physicist’s Point of View”, Langmuir, vol.20, pp.2405-2408 (2004).
[18].Barthlott, W., Neinhuis, C., “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, 202, 1-8 (1997).
[19].Hare, E. F., Shafrin, E. G., Zisman, W. A. J., “Properties of films of adsorbed fluorinated acids”, Phys. Chem., 58, 236-239 (1954).
[20].F. Hochart, Joelle L. Mitjaville, Roger De jaeger, L. Gengembre, J. Grimblot, “Plasma surface treatment of Poly(acrylonitrile) films by fluorocarbon compounds”, Thin Solid Films, 142,574(1999).
[21].David Quere, “Rough ideal on wetting”, Journal of Physica A, Vol. 313, pp. 32-46 (2002).
[22].T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, “Super- water-repellent fractal surfaces”, Langmuir, Vol. 12, pp. 2125-2127 (1996).
[23].R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by water”, Industrial & Engineering Chemistry Research, vol.28, p.988 (1936).

[24].A. B. D. Cassie, S. Baxter, “Wettability of porous surfaces” ,
Transactions of the Faraday Society, vol.40, pp.546-551 (1944).
[25].Shang, H. M., Wang, Y., Limmer, S. J., Chou, T. P., Takahashi, K., Cao, G. Z., "Optically transparent superhydrophobic silica-based films", Thin Solid Films, 472, 37-43 (2005).
[26].Nadargi, D. Y., Latthe, S. S., Hirashima, H., Rao, A. V., “Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels”, Microporous and Mesoporous Materials, 117, (3)617-626 (2009).
[27].Venkateswara Rao, A., Latthe, S. S., Nadargi, D. Y., Hirashima, H., Ganesan, V.,“Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method”, Journal of Colloid and Interface Science, 332, (2)484-490 (2009).
[28].Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L., Zhu, D., “Electrochemical deposition of conductive superhydrophobic zinc oxide thin films”, J. Phys. Chem. B, 107, 9954-9957 (2003).
[29].Lee, W., Jin, M. K., Yoo, W. C., Lee, J. K., “Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability”, Langmuir, 20, 7665-7669 (2004).
[30].Nakajima, A., Abe, K., Hashimoto, K., Watanabe, T., “Preparation of hard super-hydrophobic films with visible light transmission”, Thin Solid Films, 376, 140-143 (2000).
[31].Chang, K.-C., Chen, Y.-K., Chen, H., “Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors”, Surf. Coat. Technol., 201, (24)9579-9586 (2007).
[32].Chang, K.-C., Chen, Y.-K., Chen, H., “Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value”, Surf. Coat. Technol., 202, (16)3822-3831 (2008)
[33].Tian, H., Yang, T., Chen, Y., “Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid”, Appl. Surf. Sci., 255, (7)4289-4292 (2009).
[34].Onda, T., Shibuichi, S., Satoh, N., Tsujii, K., “Super-water-repellent fractal surfaces”, Langmuir, 12, 2125-2127 (1996).
[35].D. Oner, T. J. McCarthy,“Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability”, Langmuir, vol.16, pp.7777-7782 (2000).
[36].M. Ma, Y. Mao, M. Gupta, K. K. Gleason, G. C. Rutledge, “Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition”, Macromolecules, vol.38, pp.9742-09748 (2005).
[37].Hirotsu, T., et al., “Surface wetting phenomena of plasma polymer-coated sheets of poly(L-lactic acid)/poly(butylene succinate)”, Thin Solid Films, 515(9): p. 4125-4129 ( 2007).
[38].Il Yoon, Y., et al., “Superhydrophobicity of PHBV fibrous surface with bead-on-string structure”, Journal of Colloid and Interface Science, 320(1):p. 91-95 (2008).
[39].Hui W, D.D., Xuedong W., “Fabrication of superhydrophobic surfaces on aluminum”, Applied Surface Science, 17: p. 5599-5601 (2008).
[40].Tsuruta, S., et al., “Superhydrophobic phenomena on three-dimensional surface structures coated with plasma polymer”, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 45(10B): p. 8502-8505 (2006).
[41].Teshima, K., et al., “Ultra-water-repellent poly(ethyleneterephthalate) substrates”, Langmuir, 19(25): p. 10624-10627 (2003).
[42].Hozumi, A., Kondo, T., Kajita, I., Sekoguchi, H., Sugimoto, N., Takai, O., “Effects of methyl and perfluoro-alkyl groups on water repellency of silicon oxide films prepared by microwave plasma enhanced chemical vapor deposition”, Jpn. J. Appl. Phys., 36, 4959-4963 (1997).
[43].Elkin, B., et al., “Wettability, chemical and morphological data of hydrophobic layers by plasma polymerization on smooth substrates”, Surface & Coatings Technology, 119: p. 836-840 (1999).
[44].Coulson, S. R., Woodward, I. S., Badyal, J. P. S., Brewer, S. A., Willis, C., “Plasmachemical functionalization of solid surfaces with low surface energy perfluorocarbon chains”, Langmuir, 16, 6287-6293 (2000).
[45].Teare, D.O.H., et al., “Pulsed plasma deposition of super-hydrophobic nanospheres”, Chemistry of Materials, 14(11): p. 4566-4571 (2002).
[46].Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., Gleason, K. K., “Superhydrophobic Carbon Nanotube Forests”, Nano. Lett., 3, 1701-1705 (2003).
[47].Ladwig, A., Babayan, S., Smith, M., Hester, M., Highland, W., Koch, R., Hicks, R. F., “Atmospheric plasma deposition of glass coatings on aluminum”, Surf. Coat. Technol., 201, 6460-6464 (2007).
[48].Raballand, V., Benedikt, J., Keudell, A. V., “Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet”, Appl. Phys. Lett., 92, 091502/091501-091502/091503 (2008)
[49].N. Inagaki, S. Tasaka, and M. Makino“Plasma polymer deposition from mixture of tetramethoxysilane and oxygen on PET films and their oxygen gas barrier properties”, J. Appl. Polym. Sci.,64 1031-1039 (1997).
[50].N. Inagaki, S. Tasaka, and H. Hiramatsu, “Preparation of oxygen gas barrier poly(ethylene terephthalate) films by deposition of silicon oxide films plasma-polymerized from a mixture of etramethoxysilane and oxygen”, J. Appl.Polym. Sci., 71 2091-2100 (1999).
[51].N. Inagaki, S. Tasaka, and T. Nakajima, “Preparation of oxygen gas barrier polypropylene films by deposition of SiOx films plasma-polymerized from a mixture of tetramethoxysilane and oxygen”, J. Appl.Polym. Sci. 782389-2397 (2000).
[52].K.H.A. Bogart, S.K. Ramirez, L.A. Gonzales, G.R. Bogart, and E.R. Fisher, “Deposition of SiO2 films from novel alkoxysilane/O2 plasmas”, J. Vac. Sci. Technol., S 16(6) 3175-3184 (1998).
[53].K. Teshima, Y. Inoue, H.Suqimura, and O. Takai,“Synthesis of silica films on a polymeric material by plasma-enhanced CVD using tetramethoxsilane”, Surf. Coatin Technol., 169-170 583-586 (2003).
[54].K. Teshima, Y. Inoue, H.Suqimura, and O. Takai,“Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxsilane”,Vacuum, 66 353-357 (2002).
[55].Favia, P., et al., “Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges”, Surface & Coatings Technology, 169: p. 609-612 (2003).
[56].K. Teshima, Y. Inoue, H.Suqimura, and O. Takai, “Room-temperature deposition of high-purity silicon oxide films by RF plasma-enhanced CVD”, Surf. Coat. Technol., 146-147451-546 (2001).
[57].K. Teshima, Y. Inoue, H.Suqimura, and O. Takai,“Reduction of carbon impurities in silicon oxide films prepared by RF plasma-enhanced CVD”,Thin Soild Films, 390, 88-92 (2001).
[58].K. Teshima, Y. Inoue, H.Suqimura, and O. Takai,“Growth and structure of silica films deposited on a polymeric material by plasma-enhanced chemical vapor deposition”, Thin Solid Films, 420-421, 324-329 (2002).
[59].Babayan, S. E., Jeong, J. Y., Schutze, A., Tu, V. J., Moravej, M., Selwyn, G. S., Hicks, R. F., “Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet”, Plasma sources. Sci. T., 10, 573-578 (2001).
[60].Yang, S. H., Liu, C. H., Hsu, W. T., Chen, H., “Preparation of super-hydrophobic films using pulsed hexafluorobenzene plasma”, Surf. Coat. Technol., 203, 1379-1383 (2009).
[61].H. Matsuyama, A. Kariya and M. Teramoto,“Effect of siloxane chain lengths of monomers on characteristics of pervaporation membranes prepared by plasma polymerization”, J. Appl. Polym. Sci., 51, 689-693 (1994).
[62].J. Van Esch, F. Schoonbeek, M.D. Loos, E.M. Veen, R.M. Kellog, B.L. Feringa, in: R.Ungaro, E. Dalcanale (Eds.), Supramolecular Science, Where it is Going, Kluwer Academic Publishers, Netherlands, pp. 233–259 (1999).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔