(3.235.245.219) 您好!臺灣時間:2021/05/07 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張家瑋
研究生(外文):Chia-Wei Zhang
論文名稱:添加填料對AA6061鋁合金摩擦攪拌銲接後的微觀組織及機械性質之影響
論文名稱(外文):Effect of Filler Addition on the Microstructures and Mechanical Properties of Friction-Stir Aluminium Alloy AA6061 Welds
指導教授:黃和悅
指導教授(外文):Her-Yueh Huang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:6061鋁合金摩擦攪拌銲接填料機械性質微觀組織
外文關鍵詞:6061 Aluminum AlloyFriction Stir WeldedFillerMechanical PropertyMicrostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
6061鋁合金為最常使用的商用鋁合金,具有較佳的加工性、導電度、低成本,目前廣泛應用在航空及汽車工業上。摩擦攪拌銲接(FSW)為固態接合技術,過程中溫度未達熔點,故無氣孔、凝固裂紋等傳統銲接產生之缺陷,所以特別適合鋁合金接合之應用。本實驗以GMAW預置AWS ER70S–6規格的填料於6061鋁合金中,再施以摩擦攪拌銲接,接著進行硬度試驗、微觀結構分析及機械性質等測試,以瞭解填料添加與不同轉速對各種性質的影響。
實驗結果發現,當轉速2,896rpm時,平均晶粒為最大,為15.28μm;而預置填料後其銲道硬度也明顯提高,皆可超過100 Hv以上;而沒有填料的硬度最高為則為70 Hv。拉伸強度及降伏強度會隨著轉速提高而增加,但是預置填料的伸長量則明顯下降。而填料與否,經過摩擦攪拌銲接後,晶格方向皆傾向於(111)。

6061 is one of the most commonly commercial aluminum alloys, with better workability, conductivity, low-cost, widely used in the aerospace and automotive industry. Friction stir welding is a solid-state joining technique, which means that the metal is not melted during the process, no solidification-related cracking, porosity, or oxygen contamination occurs, it is particularly suitable for welding aluminum-based materials. In the present work, bead on plate GMAW welds on aluminium alloy 6061 were made using AWS ER70S-6 filler wire, then the friction stir welding was performed. In order to understand the effect of different speeds and filler metal addition of friction stir welding. The study covered hardness, microstructure analysis, and mechanical properties.
The experimental results showed that the average grain size was 15.28μm at a high rotation speed of 2,896 rpm. The hardness of the friction stir welded with filler metal showed over 100 Hv, however the average hardness in without filler metal weld was 70 Hv. Yield strength and ultimate tensile strength increased with increase in rotation speed, but in the case of friction stir welding with filler metal decreased the elongation. Furthermore, the preferred orientation (111) can be observed during the friction stir welding with or without filler metal from the original rolling texture in aluminum alloy 6061.

目錄
中文摘要........i
英文摘要........ii
致謝........iv
目錄........v
表目錄........vii
圖目錄........viii
第一章 緒論 ........1
1. 1前言........1
1. 2研究方法與目的........4
第二章 理論基礎及文獻回顧........5
2. 1鋁合金簡介........5
2.1.1鋁的來源與冶煉........5
2.1.2鋁合金的分類........6
2.1.36061鋁合金的發展與特性........9
2.1.4鋁合金銲接特性........10
2.1.5金屬基複合材料........12
2. 2摩擦攪拌銲接製程........15
2.2.1摩擦攪拌銲接概述........15
2.2.2摩擦攪拌銲接參數........20
2.2.3摩擦攪拌銲接的材料流動分析........21
2.2.4摩擦攪拌銲道的微觀組織........23
2.2.5摩擦攪拌銲道的機械性質........27
2. 3文獻歸納........29
第三章 實驗方法與步驟........32
3. 1實驗流程........32
3. 2實驗設備........33
3. 3實驗材料........41
3. 4試片前處理........42
3. 5機械性質測試........43
3. 6微觀組織分析........44
第四章 實驗結果與討論........45
4. 1摩擦攪拌前後之微觀組織........45
4. 2預置填料對銲道硬度之影響........56
4. 3預置填料對銲件機械性質之影響........59
4. 4 X–ray繞射分析........73
第五章 結論........75
參考文獻........76
Extended Abstract........81
簡歷........86

[1]J. Hirsch, T.A. Samman, “Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications”, Acta Materialia, 2013, 61(3), pp.818-843.
[2]W.M. Thomas, E.D. Nicholas, “Friction stir welding for the transportation industries”, Materials & Design, 1997, 18(4-6), pp.269-273.
[3]A.R. Hind, S.K. Bhargava, S.C. Grocott, “The surface chemistry of Bayer process solids: a review”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146(1–3), pp.359–374.
[4]E.A. Starke Jr., “Aluminum alloys: alloy, heat treatment, and temper designation”, Encyclopedia of Materials: Science and Technology, 2001, pp106-107.
[5]J.E. Hatch, “Aluminum properties and physical metallurgy”, ASW, Metals Park, Ohio, 1984, p.201.
[6]S.J. Park, M.K. Seo, “Types of Composites”, Interface Science and Technology, 2011, 18, pp.501-629.
[7]M. Taya, R.J. Arsenault, “Metal matrix composites: thermomechanical behavior”, Pergamon Press, Oxford, 1989, pp.1-5.
[8]J.A. Mcelman, Composites Handbook, 1988, pp.858-866.
[9]P.K. Rohatgi, “Foundry processing of metal matrix composites”, Modern Casting, 1988, pp.47-50.
[10]V.P. Mcconnell, “Application of composites in sporting goods”, Comprehensive Composite Materials, 2000, 6, pp.787-809.
[11]H.F. Zhao, W.Z. Tang, C.M. Li, G.C. Chen, F.X. Lu, Y.H. Cai, H. Guo, R.Q. Zhang, P.W. Zhang, “Thermal conductive properties of Ni–P electroless plated SiCp/Al composite electronic packaging material”, Surface and Coatings Technology, 2008, 202(12), pp.2540-2544.
[12]D. Ge, M. Gu, “Mechanical properties of hybrid reinforced aluminum based composites”, Materials Letters, 2001, 49(6), pp.334-339.
[13]X.D. Sui, C.P. Luo, Z.X. Luo, L.Z. Ouyang, “The fabrication and properties of particle reinforced cast metal matrix composites”, Journal of Materials Processing Technology, 1997, 63(1), pp.426-431.
[14]沈聲裕,2000,“石墨/A390 鋁基複合材料鑄件機械性質及耐磨耗性之研究”,國立台灣師範大學工業教育研究所碩士論文,台北。
[15]R.W. Bruner, “Metallurgy of die casting alloys”, SDCE. Detroit. MI, 1976, p.25.
[16]F.H. Samuel, A.M. Samuel, “Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn(380) alloy castings”, Journal of Materials Science, 1995, 30, pp.2531-2510.
[17]D. Nath, R. Bolls, S. Chandra, “Compacting behavior of Al–Pb mixtures”, Powder Metallurgy International, 1992, 24(2), pp.84-87.
[18]J.Z. Zhao, S. Drees, L. Rathke, “Strip casting of Al–Pb alloys — a numerical analysis”, Materials Science and Engineering A, 2000, 282, pp.262-269.
[19]C.J. Tseng, S.L. Lee, T.F. Wu, J.C. Lin, “Effects of fe content on microstructure and mechanical properties of A206 alloy”, Materials Transactions, JIM., 2000, 41(6), pp.708-713.
[20]W.M. Thomas, E.D. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, The Welding Institute, Internal Patemt Application No.PCT/GB92/02203 and GB Patent Application No.9125978.8, 1991.
[21]C.J. Dawes, W.M. Thomas, “Friction stir process welds aluminum alloys”, Welding Journal, 1996, pp.41-45.
[22]L.E. Murr, G. Liu, J.C. McClure, “Dynamic recrystallization in friction-stir welding of aluminum alloy 1100”, Journal of Materials Science Letters, 1997, 16, pp.1801-1803.
[23]G. Liu, L.E. Murr, C-S. Niou, J.C. McClure, F.R. Vega, “Microstructural aspects of the friction stir welding of 6061-T6 aluminum”, Scripta Materialia, 1997, 37(3), pp.355-361.
[24]C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, “Effects of friction stir welding on microstucture of 7075 aluminum”, Scripta Materialia, 1997, 36, pp.69-75.
[25]O.V. Flores, C. Kennedy, L.E. Murr, D. Brown, S. Pappu, B.M. Nowak, J.C. McClure, “Microstructural issues in a friction stir welded aluminum alloy”, Scripta Materialia, 1998, 38(5), pp.703-708.
[26]W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, GB Patent Application No. 9125978.8, December 1991 and US Patent No.5460317, 10, 1995.
[27]Y. Li, L.E. Murr, J.C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum”, Materials Science and Engineering, 1999, A271, pp.213-223.
[28]M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes, “Flow patterns during friction stir welding”, Materials Characterization, 2003, 49, pp.95-101.
[29]G. Oertelt, S.S. Babu, S.A.David, E.A. Kenik, “Effect of thermal cycling on Friction Stir Welds of 2195 aluminum alloy”, Welding Journal, 2001, 80, pp.71-79.
[30]K.V. Jata, S.L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys”, Scripta Materialia, 2000, 43(8), pp.743-749.
[31]N. Saito, I. Shigematsu, “Grain refinement of 1050 aluminum alloy by friction stir processing”, Journal of Materials Science Letters, 2001, 20, pp.1913-1915.
[32]Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, “Hall-Petch relationship in friction stir welds of equal channel angular pressed aluminium alloys”, Materials Science and Engineering, 2003, A354, pp.298-305.
[33]W.B. Lee, Y.M. Yeon, S.B. Jung, “The improvement of mechanical properties of friction-stir welded A356 Al alloy”, Materials Science and Engineering, 2003, A355, pp.154-159.
[34]康宗瑋,2007,“鋁合金之摩擦攪拌銲接之實驗”,國立中山大學機械與機電工程研究所碩士論文,高雄。
[35]K. Colligan, “Material flow behavior during friction stir welding of aluminum”, Welding Journal, 1999, 78, pp.229-237.
[36]H. Fujii, Y.G. Kim, T. Tsumura, T. Komazaki, K. Nakata, “Estimation of material flow in stir zone during friction stir welding by distribution measurement of Si particles”, Materials Transactions, 2006, 47, pp.224-232.
[37]M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes, “Flow patterns during friction stir welding”, Materials Characterization, 2003, 49, pp.95-101.
[38]W.B. Lee, Y.M. Yeon, S.B. Jung, “The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials”, Scripta Materials, 2003, 49, pp.423-428.
[39]L. Fratini, G. Buffa, “CDRX modeling in friction stir welding of aluminium alloys”, International Journal of Machine Tools and Manufacture, 2005, pp.1188-1194.
[40]F.J. Humphreys, M. Hatherly, “Recrystallization and related annealing phenomena”, Oxford, UK, Pergamon, Tarrytown, N.Y., U.S.A., 1996, pp.363-388.
[41]K.V. Jata, S.L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum”, Scripta Materialia, 2000, 43(8), pp.743-749.
[42]J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, ”Microstructural investigation of friction stir welded 7075-T651 aluminium”, Acta Materialia, 2003, 51, pp.713-729.
[43]J.Q. Su, T.W. Nelson, C.J. Sterling, “Grain refinement of aluminum alloys by friction stir processing”, Philosophical Magazine, 2006, 86, pp.1-24.
[44]C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, “Effects of friction stir welding on microstructure of 7075 aluminum”, Scripta Materialia, 1997, 36, pp.69-75.
[45]Y.S. Sato, H. Kokawa, “Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum”, Metallurgical and Materials Transactions A, 2001, 32(12), pp.3023-3031.
[46]林俊雄,2011,“SiC顆粒強化鋁基複合材料之摩擦攪拌銲接研究”,國立中正大學機械工程研究所碩士論文,嘉義。
[47]程群傑,2009,“鋁基複合材料摩擦攪拌銲道特性與銲合機理分析”,國立中正大學機械工程研究所碩士論文,嘉義。
[48]林鼎崴,2006,“鋁合金摩擦攪拌銲接的銲道特性與銲合機理分析”,國立中正大學機械工程研究所碩士論文,嘉義。
[49]劉柏志,2009,“7075與A356鋁合金異質摩擦攪拌銲接後之微觀組織及拉伸性質研究”,國立成功大學材料科學及工程研究所碩士論文,台南。
[50]林春億,2006,“摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質之影響”,國立成功大學材料科學及工程研究所碩士論文,台南。
[51]黃展鴻,2007,“摩擦攪拌7075鋁合金組織特性及拉伸性質之後熱處理效應探討”,國立成功大學材料科學及工程研究所碩士論文,台南。
[52]R. Johnson, P. Threadgill, “Friction Stir Welding of Magnesium Alloys”, The Minerals, Metals & Materials Society, 2003, pp.147-152.
[53]J. Adamowski, M. Szkodo, “Friction stir welds (FSW) of aluminium alloy AW6082-T6”, Journal of Achievements in Materials and Manufacturing Engineering, 2007, 20, pp.403-406.
[54]T. Chen, W.B. Lin, “A prime study on FSW joint of dissimilar metals”, Proceedings of the XIth International Congress and Exposition, 2008.
[55]Taiki Morishige, Atsushi Kawaguchi, Masato Tsujikawa, Makoto Hino, Tomotake Hirata, Kenji Higashi, ”Dissimilar welding of Al and Mg alloys by FSW“, The Japan Institute of Metals, 2008, 49(5), pp.1129-1131.
[56]Govind.Nandipati, Nageswara Rao.Damera, Ramanaiah. Nallu, “Effect of microstructural changes on mechanical properties of Friction stir welded nano SiC reinforced AA6061 composite”, International Journal of Engineering Science and Technology, 2010, 2(11), pp.6491-6499.
[57]鄭敦文,2005,“Al-7.6Si-0.4Mgc合金微觀組織與機械性質之摩擦攪拌效應探討”,國立成功大學材料科學及工程研究所碩士論文,台南。
[58]Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, T. Hashimoto, “Microtexture in the friction-stir weld of an aluminum alloy”, Metallurgical and Materials Transactions A, 2001, 32A(4), pp.941-948.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔