(3.92.96.236) 您好!臺灣時間:2021/05/07 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李建興
研究生(外文):Chien-Hsing Li
論文名稱:超高強度鋼電阻點銲之顯微組織與機械性質研究
論文名稱(外文):Microstructures and Mechanical Properties of Resistance Spot Welded Ultra High Strength Steel
指導教授:黃和悅
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:超高強度鋼電阻點銲銲接參數顯微組織機械性質
外文關鍵詞:Ultra High Strength SteelResistance Spot WeldingMicrostructural AnalysisWelding parametersMechanical Property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為探討三種電極頭點銲對超高強度鋼板顯微組織、機械性質及接合性能方面之影響。經實驗獲得最佳的銲接參數為電極端徑4mm、熔接時間10cycles、電極加壓力10kgf、充電電壓400V。由顯微組織分析結果顯示,因板材與板材間的接觸電阻比電極頭與板材的接觸電阻來得大,所以熱量集中在中心,使得銲核中心處的晶粒組織較為緻密,且電極頭與板材的組織則較為鬆散。經由拉剪試驗後,其破斷型態由鈹銅及鉻鋯銅電極頭進行點銲皆為典型的窩穴狀延性破斷,但當使用磷青銅電極頭進行點銲會產生脆性的破壞型態,由此可見,使用鈹銅及鉻鋯銅電極頭進行點銲,效果會比使用磷青銅電極頭進行點銲強度還要好,且發現銲點表面會含有Cu元素,其原因可能是電極頭熔融在銲點表面所造成的。

The research was focused on the effects of Ultra High Strength Steel Sheets microstructure, mechanical property, and joint performance. The experimentally obtained optimum welding parameters Electrode diameter 4mm,Welding time 10kgf,Voltage 400V.By Microstructural Analysis display ,Since the contact between the sheet and the sheet resistance of the electrode contact resistance is far greater.So the heat is concentrated in the center,makes the center of the weld nugget grain structure is more compact,and the electrode head and the plate is more loosely organized.By tensile shear test,its breaking patterns made of beryllium copper and chromium zirconium copper spot welding electrode tips are typical ductile breaking nest cryptands.However, when a spot welding electrode phosphor bronze lattice generated weak bonding, and produce ductile transfer brittle destruction patterns.Thus, the use of beryllium copper and chromium zirconium copper electrode welding , the effect than the use of phosphor bronze spot welding electrodes intensity even higher.And found that Spot Welding the surface will contain Cu elements, the reason may be fused to the Spot Welding by the surface caused.

目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究計畫之背景 1
1.3 研究計畫之目的 2
1.4 研究計畫之重要性 4
第二章 文獻回顧 5
2.1電阻銲接之原理與應用 5
2.1.1電阻銲接之原理 5
2.1.2影響電阻點銲的因素 6
2.1.3電阻銲接之優點 9
2.1.4電阻銲接之缺點 9
2.1.5電阻銲的銲接循環 10
2.1.6電阻銲之銲接性評估 12
2.1.7電阻點銲之分流 12
2.1.8電阻銲之應用 15
2.2 點銲之電阻 17
2.2.1點銲時的電阻 17
2.2.2接觸電阻 19
2.2.3總電阻 20
2.2.4邊緣效應 22
2.3 點銲的加熱及熱平衡 22
2.3.1電流對點銲加熱的影響 22
2.3.2點銲熱平衡 24
2.3.3點銲熱平衡特徵 25
2.3.4銲接區的溫度分佈圖 26
2.4 超高強度鋼板 27
2.4.1 超高強度鋼板的特性 30
2.4.2 車身材料使用高強度鋼板之趨勢 34
2.4.3 高強度鋼板與普通軟鋼板之差別 34
2.5 國內外文獻中有關電阻銲之研究概況 35
第三章 實驗流程與方法 43
3.1 實驗流程 43
3.2 實驗器材 44
3.2.1 實驗設備與儀器 44
3.2.2 實驗材料準備與製作 45
3.3 電阻銲接 46
3.3.1 電極 46
3.3.2 電阻銲接製程 48
3.4 金相顯微組織 49
3.4.1 冷鑲埋 49
3.4.2 金相觀察與分析 50
3.5 拉伸剪力測驗 52
3.6 破斷點形態觀察 54
3.7 低週次疲勞試驗 55
3.8 銲點外觀量測 56
3.9 銲核硬度量測 56
3.10 SEM及EDS成份分析 57
3.11 X-Ray 繞射之結晶構造分析 58
第四章 實驗結果與討論 59
4.1 銲接參數對可銲區之影響 59
4.2 銲接參數對銲點金相組織影響之結果 60
4.3 X-Ray 繞射之結晶構造分析之結果 62
4.4 試片拉剪試驗 63
4.5 拉剪破斷面SEM分析 64
4.6 破斷點型態規範 67
4.7 低週次疲勞試驗 68
4.8 不同電極頭對銲點外觀之關係 71
4.9 銲核微硬度量測 73
4.10 EDS成份分析 74
第五章 結論 76
參考文獻 77
附錄一 80

表目錄
表2.1 超高強度鋼板在車身零件的應用 29
表3.1 試片之合金元素成份表(mass%) 46
表3.2 試片之機械性質 46
表3.3 各電極材料成份表(wt%) 46
表3.4 電極材料之性質 47
表3.5 實驗參數配置表 48
表4.1 三種電極頭點銲之拉剪機械性質 64
表4.2 點銲直徑與凹陷程度平均值之關係彙整表 72
表6.1 三種不同電極頭點銲之高強度鋼試片外觀量測結果彙整表 80

圖目錄
圖2.1 銲接循環示意圖 10
圖2.2 銲接時分流現象 13
圖2.3 電阻銲的分類圖 15
圖2.4 電阻銲示意圖及溫度分布情形圖 16
圖2.5 點銲時電阻分佈圖 17
圖2.6 接觸電阻形成原因示意圖 19
圖2.7 典型材料的動態電阻比較 20
圖2.8 低碳鋼典型動態電阻曲線 21
圖2.9 點銲時的電場 23
圖2.10 點銲時各典型截面的電流密度分佈 23
圖2.11 點銲的熱平衡組成 24
圖2.12 點銲時溫度分佈圖 26
圖2.13 鋼鐵材料在車體結構中的應用 28
圖2.14 各種鋼材的拉伸強度與伸長量之關係 29
圖2.15 DP980的微觀結構圖 35
圖2.16 點銲在熱影響區與電極壓力的硬度圖 36
圖2.17 銲件尺寸橢圓形銲核示意圖 38
圖2.18 五種類型的破壞模式 38
圖2.19 熔融區微觀結構圖 39
圖2.20電阻點銲疲勞試驗斷裂圖 41
圖2.21頂部和底部的銲點之顯微組織 42
圖2.22 疲勞破斷面的顯微組織 42
圖3.1 實驗流程示意圖 43
圖3.2 直流微電阻銲接機 44
圖3.3 實驗試片彙整原板材與剪裁完成之結果圖 45
圖3.4 電極端的尺寸示意圖 47
圖3.5 冷鑲埋示意圖 49
圖3.6 冷鑲埋完成之試片 50
圖3.7 電阻點銲試片示意圖 52
圖3.8 拉伸試驗機 53
圖3.9 AWS D8 破斷典型態觀察規範 54
圖3.10 低週次動態疲勞試驗機 55
圖3.11 維氏硬度取點示意圖 56
圖3.12 掃描式電子顯微鏡與能量散佈光譜儀 57
圖3.13 X-ray繞射儀 58
圖4.1 可銲區之定義 59
圖4.2 試片金相實驗觀察區域的示意圖 61
圖4.3 三種電極材料點銲試片之金相組織 61
圖4.4 使用三種不同電極頭進行點銲的XRD分析 62
圖4.5 三種電極頭點銲之拉剪曲線圖 63
圖4.6 鈹銅電極頭進行點銲之拉剪破斷面SEM圖 68
圖4.7 磷青銅電極頭進行點銲之拉剪破斷面SEM圖 68
圖4.8 鉻鋯銅電極頭進行點銲之拉剪破斷面SEM圖 68
圖4.9 銲點中的裂紋產生及擴展 71
圖4.10 橫截面圖及低週次疲勞試驗破斷圖 71
圖4.11 低週次疲勞試驗破斷圖 72
圖4.12 鈹銅微硬度分佈圖 73
圖4.13 磷青銅微硬度分圖 73
圖4.14 鉻鋯銅微硬度分佈圖 73
圖4.15 微硬度比較圖 73
圖4.16試片金相實驗觀察區域的示意圖 74
圖4.17 SEM-EDS實驗觀察區域的示意圖 75

[1] M.D. Tumuluru, “Resistance spot welding of coated high-strength dual phase steels”, Welding Journal , 2006, 85(8), pp.31–37.
[2] M. Marya, X.Q. Gayden, “Development of requirements for resistance spot welding dual-phase (DP600) steels part 1 – the cause of interfacial fracture”, Welding Journal, 2005, 84(11), pp.172–182.
[3] C. Ma, S.D. Bhole, D.L. Chen, A. Lee, E. Biro, G. Boudreau, “Expulsion monitoring in spot welded advanced high strength automotive steels”, Science and Technology of Welding & Joiningl, 2006, 11(4), pp.480–487.
[4] T.B. Hilditch, J.G. Speer, D.K. Matlock , “Effect of susceptibility to interfacial fracture on fatigue properties of spot-welded high strength sheet steel”, Journal of Materials Science ,2007, 28(10), pp.2566-2576.
[5] P.H. Thornton, A.R. Krause, R.G. Davies, “The Aluminum Spot Welding”, Welding Journal, 1996, 75(3), pp.101-108
[6] H. Tang, W. Hou, S.J. Hu, H. Zhang, “Force Characteristics of Resistance Spot Welding Steels”, Welding Journal, 2000, 79(7), pp.175-183.
[7] H. Papkala, “Technological problems in spot welding of galvanized car body sheet”, Welding Int, 1992, pp.341-346.
[8] 王振欽,銲接學,登文書局,民國76年9月修訂3版,22-22頁。
[9] “AWS welding handbook”, London, England: American Welding Society, Macmillan Press Ltd, 3(7) ,1980.
[10] M. Zhou, H. Zhang, S.J. Hu, ”Relationships between quality and attributes of spot welds”, Welding Journal, 2003, pp.72-77.
[11] S. Agashe, H. Zhang, “Selection of schedules based on heat balance in resistance spot welding”, Welding Journal, 2003, pp.179-183.
[12] J. Norrish, “Advanced welding processes”, Bristol, Philadelphia and New York, United Kingdom, Institute of Physic Publishing, 1992.
[13] H. Zhigang, K. Soo, W. Yuanxun, L. Chunzhi, C. Chuanyao, “Finite element analysis for the mechanical features of resistance spot welding process”, Journal of Materials Processing Technology, 2007, pp.160-165.
[14] Julian Edgar, “Steel Identification Using Hardness Testing”, Autospeed, 462,2008.
[15] Nikolay Tontchev, “Structure and Properties of Steels for Applications in Automotive Industry”, Mechanics Transport Communications, 2010, pp.4.1-4.7.
[16] B.K. Zuidema, S.G. Denner, B.Engl, J.OlofSperle, ”New High Strength Steels Applied to the Body Structure of ULSAB-AVC”, International Body Engineering Conference & Exposition, 2001, pp.984-992.
[17] A. Kumar, S.B. Singh, K.K. Ray, “Influence of Bainite/Martensite-Content on the Tensile Properties of Low Carbon Dual-Phase Steels”, Materials Science Engineering A, 2008, pp.270-282.
[18] H.Hsan, “Studies on the Development of High‧Strength Dual Phase Steel Sheets with High Rm Values”, Metallurgical and Materials Transactions A, 12(7), 1982, pp.1257-1262.
[19] R. Kuziak, R. Kawalla, S. Waengler, “Advanced high strength steels for automotive industry”, Archives of Civil and Mechanical Engineering, 8(2), 2008, pp.103-117.
[20] O. Matsumura, Y. Sakuma, H. Takechi, “Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0.4C-1.5Si-0.8Mn Steel”, Transactions of the Iron and Steel Institute of Japan, 27(4),1987, pp.570-579.
[21] M. Meyer, D. Vanderschueren, B.C. Cooman, “The Influence of the Substitution of Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels”, Journal of Iron and Steel Research, International, 39(8), 1999, pp.813-822.
[22] P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J.V. Humbeeck, F. Delannay, “The Developments of Cold-Rolled TRIP-Assisted Multiphase Steels.Al-Alloyed TRIP-Assisted Multiphase Steels”. Journal of Iron and Steel Research, International, 41(9), 2001, pp.1068-1074.
[23] S. Traint, A. Pichler, R. Sierllnger, “Low-Alloyed TRIP-Steels with Optimized Strength, Forming and Welding Properties”, Steel Research International, 77(9-10), 2006, pp.641-649.
[24] L. Li, P. Wollants, Y.L. He, B. C. Cooman, X.C. Wei, Z.Y. Xu, “Review and Prospect of High Strength Low Alloy TRIP Steel”, ActaMetallurgicaSinica, 2003, 16(6), pp.457-465.
[25] V.A. Kazakovtseva, K.P. Usikov, “Study of Structure Peculiarities of Low-Tempered Martenstie of Alloyed Steels”, FizikaMetallov I Metallovedenie, 48(2), 1979, pp.358-366.
[26] Y. Tomita, K. Okabayashi, “Improvement in Lower Temperature Mechanical Properties of 0.40Pct C-Ni-Cr-Mo Ultrahigh Strength Steel with the Second Phase Lower Bainite”, Metallurgical and Materials Transactions A, 14(3), 1983, pp.485-492.
[27] Y. Tomita, K. Okabayashi, “Mechanical Properties of 0.40Pet C-Ni-Cr-Mo High Strength Stel Having a Mixed Structure of Martensite and Bainite”, Metallurgical and Materials Transactions A, 16(1) 1985, pp.73-82.
[28] M.Pouranvari, “Effect of Resistance Spot Welding Parameters on the HAZ Softening of DP980 Ferrite-Martensite Dual Phase Steel Welds”, World Applied Sciences Journal, 2011, pp.1454-1458.
[29] Y.H. Gang, Z.Y. Song, L.X. Min, C.Guanlong, ”An experimental investigation on critical specimen sizes of high strength steels DP600 in resistance spot welding”, Materials and Design, 2008, pp.1679-1684.
[30] L. Xinsheng, W. Xiaodong, G. Zhenghong, W. Min, W. Yixiong, R. Yonghua, “Microstructures in a resistance spot welded high strength dual phase steel”, Materials Characterization , 2010, pp.341-346.
[31] R.S Florea, D.J Bammann, A.Yeldell, K.N.Solanki, Y. Hammia, “Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy”, Materials and Design, 2013,pp.456–465.
[32] M. Chelliah, T. Tau, F. Omar, W. Pey, “Methodology for Testing of Spot-Welded Steel Connections Under Static and Impact Loadings”, Welding & Joining , Society of Automotive Emgimeers,Inc., Warrendale,2003, pp.21-28.
[33] American welding society (ASW). AWS D8.1. Specification for automotive weld quality-resistance spot welding of steel,2007, pp.1–40.
[34 ] M.I. Khan, M.L. Kuntz, E. Biro, Y. Zhou,”Microstructure and Mechanical Properties of Resistance SpotWelded Advanced High Strength Steels”, The Japan Institute of Metals,49(7),2008,pp.1629-1637.
[35] Mohammad Ibraheem Khan,”Spot Welding of Advanced High Strength Steels”, Mechanical Engineering,2007,pp.67-70.
[36]S.J. Dong, G.P. Kelkar, Y. Zhou, "Electrode Sticking During Micro-Resistance Welding of Thin Metal Sheets",Electronice packaing manufacturing, 2002, 25(4), pp.355-361.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔