(3.236.222.124) 您好!臺灣時間:2021/05/13 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林暐珣
研究生(外文):Wei-Shun Lin
論文名稱:粉末合金鋼添加硼之燒結與機械性質研究
論文名稱(外文):Sintering and Mechanical Properties of the Powder Alloy Steel Adding Boron
指導教授:吳明偉
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:粉末冶金液相燒結顯微組織抗拉強度
外文關鍵詞:powder metallurgyboronliquid phase sinteringmicrostructuretensile strength
相關次數:
  • 被引用被引用:3
  • 點閱點閱:474
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
粉末合金鋼普遍使用於汽機車等相關產業,但因其成品帶有約10%的孔隙率,因此其強度及韌性皆較鑄件要來的差,而有效提升其成品密度成為研究粉末冶金材料的一大課題。本研究先初步探討B元素對於液相燒結與燒結密度的影響,結果顯示當燒結溫度在1120℃以前相對密度約在87%~88%,當燒結溫度提高至1250℃時,則相對密度可提高至94%~95%。而之後探討Mo、Cr、Ni等合金元素於不同溫度燒結下對於含B合金鋼之影響。其中Ni的添加會提升液相生成溫度。
為了解其晶粒內部之元素分佈,本研究也利用EPMA分析探討其元素擴散情形,結果發現Ni在1120℃後開始擴散,且於1200℃後會均勻分佈在晶粒內部。由硼化物之成分分佈可證實Cr、Mo、C皆易與B共同集中在硼化物內。藉由定量分析可確定各合金系統內之硼化物成分不同。在機械性質方面,硼之添加因形成許多硬度約Hv1600~2600之硼化物,因此使合金鋼之硬度相當高,最高可達HRC。但因堅硬的硼化物主要皆位在晶界上,且呈現連續相,故在拉伸過程中極易沿著硬而脆的連續硼化物產生沿晶破斷,因此抗拉強度不佳。


Powder metallurgy (PM) steels have been extensively used in the automobile industry. The strength and toughness of PM products are lower than those of wrought ones due to the presence of about 10 vol.% porosity in the PM products. Thus, the method to increase the sintered density is the key issue in the PM field. The aim of this study was to investigate the effect of boron on the liquid phase sintering and sintered density of PM steels. The results showed that, after 1120℃ sintering, the sintered density is only 87%~88%. When the sintering temperature was increased to 1250℃, the sintered density achieve 94%~95%. The influences of Mo, Cr, and Ni on the liquid phase sintering were also examined. Ni is found to increase the temperature for liquid formation.
To investigate the alloying distribution, EPMA was used to analyze the alloying diffusion and homogeneity. The results indicated that Ni atom starts to diffuse into the iron powder after 1120℃ sintering. After 1200℃ sintering, the distribution of Ni in the Fe grain is homogeneous. Furthermore, the distributions of Cr, Mo, and C matched that of B. The compositions of boride in various alloy systems are different, as identified by quantitative analyses. The addition of boron can generate many borides with high microhardness of Hv1600~2600. These borides result in the highest apparent hardness of HRC. However, these borides were continous and located primarily at the grain boundary. During tensile test, the intergranular fracture occurs along the network of boride and results in low tensile strength.


中文摘要...i
英文摘要...ii
誌謝...iv
目錄...v
表目錄...viii
圖目錄...ix
第一章 緒論...1
第二章 文獻探討...2
第三章 研究內容與方法...33
第四章 結果...41
第五章 結論...94
未來方向...95
文獻回顧...96



[1] 黃坤祥, “粉末冶金學(再版)”, 中華民國粉末冶金協會出版, 2003年, 第265-275頁。

[2] M. Selecka, A. Šalak, and H. Danninger, “The effect of boron liquid phase sintering on properties of Ni-, Mo- and Cr-alloyed structural steels”, Journal of Materials Processing Technology, 2003,Vol. 141, pp. 379–384.

[3] M. W. Wu, K. S. Hwang, and K. H. Chuang, “Improved Distribution of Nickel and Carbon in Sintered Steels Through Addition of Chromium and Molybdenum”, Powder Metallurgy, 2008,Vol. 51, No 2, pp. 160-165.

[4] Thomas F. Stephenson, Taj Singh, Steven S. Sun and Zhirui Wang,“Effect of Ni Morphology on the Fatigue Properties of P/M Ni Steels”, Advances in Powder Metallurgy and Particulate Materials, 2002, part. 5 , pp. 153-164.

[5] Anders Bergmark, Luigi Alzati and Ulrika Persson,“Fatigue Crack Initiation in P/M Steel”, Advances in Powder Metallurgy and Particulate Materials, 2002,
part. 5 , pp. 95-103.

[6] Suleyman Saritas, Robert Causton, W. Brian James and Alan Lawley,“Effect of Microstructural Inhomogeneities on the Fatigue Crack Growth Response of
a Prealloyed and two Hybrid P/M Steels”,Advances in Powder Metallurgy and Particulate Materials, 2002, part.5, pp. 136-152.

[7] M. W. Wu, K. S. Hwang, and H. S. Huang, “In-Situ Observations on the Fracture Mechanism of Diffusion Alloyed Ni-Containing PM Steels and a Proposed Method for Tensile Strength Improvement”, Metallurgical and Materials Transaction A, 2007,
Vol.38 A, No. 7, pp. 1598-1607.

[8] M. W. Wu and K. S. Hwang, “ Formation Mechanism of Weak Ferrite Areas in Ni-Containing Powder Metal Steels and Methods of Strengthening them”, Materials Science and Engineering A, 2010,Vol.527A, pp. 5421-5429.

[9] C.Y.Son, Tae Shik Yoon, and Sunghak Lee,“Correlation of Microstructure with Hardness, Wear Resistance,and Corrosion Resistance of Powder-Injection-Molded Specimens of Fe-Alloy Powders”, The Minerals, Metals & Materials Society and ASM International, 2009, Volume 40A, pp. 1110-1117.

[10] J.A. Cabral Miramontes, J. D. O. Barceinas Sa’nchez, F. Almeraya Caldero’n, A. Martı’nez Villafan˜e, and J.G. Chaco’n Nava,“Effect of Boron Additions on Sintering and Densification of a Ferritic Stainless Steel”, Journal of Materials Engineering and Performance, 2010, Volume 19(6), pp. 880-884.

[11] J. Liu, A. Cardamone, T. Potter, R. M. German, and F. J. Semel,“Liquid phase sintering of iron–carbon alloys with boron additions”, Powder Metallurgy
, 2000, Vol. 43 ,No. 1, pp. 57-61.

[12] Z. Xiu, A. Salwe’n, X. Qin, F. He and X. Sun,“Sintering Behaviour of Iron–Molybdenum Steels with the addition of Fe–B–C Master Alloy Powders”,
Powder Metallurgy, 2003, Vol. 46, No. 2, pp. 171-174.

[13] M. Sarasola, T. Gomez-Acebo, F. Castro, “Liquid generation during sintering of Fe–3.5%Mo powder compacts with elemental boron additions”, Acta Materialia, Vol 52, 2004, pp. 4615-4622.

[14] A.Molinari, J.Kazior, F.Marchetti, R.Canteri, I.Cristofolini, and A. Tiziani, “Sintering Mechanisms of Boron Alloyed AISI 316L stainless steel”, Powder Metallurgy, 1994, Vol.37, No.2, pp. 115-122.

[15] M. Momeni, C. Gierl, H. Danninger and A. Avakemian, “Thermoanalytical sintering studies of Fe–C admixed with ferroboron performed in different atmospheres”, Powder Metallurgy, 2012, Vol 55, No 1, pp. 54-64.

[16] H. O. Gulsoy , M. Kemal Bilici, Yahya Bozkurt, Serdar Salman, “Enhancing the wear properties of iron based powder metallurgy alloys by boron additions”, Materials and Design, 2007, Vol. 28, pp. 2255-2259.

[17] A. Salak and M. Selecka , “Manganese in Powder Metallurgy Steels”, Cambridge International Science Publishing , 2012, pp. 130-175.

[18] S.Narasimhan and J.Semel, “Sintering of Powder Premixes – A Brief Overview”, Advances in Powder Metallurgy and Particulate Materials, 2007, part .5,pp. 1-24.

[19] MPIF Standard 35, 2009 Edition, Materials Standards for PM Structural Parts.

[20] S. Berg and B. Maroli,“Properties Obtained by Chromium-Containing Material”, Advances in Powder Metallurgy and Particulate Materials, 2002, part 8, pp. 1-14.

[21] N. Candela, F. Velasco, M.A. Martinez, J.M. Torralba, “Influence of microstructure on mechanical properties of molybdenum alloyed P/M steels”, Journal of Materials Processing Technology, 2005, Vol. 168,pp.505-510.

[22] M. Campos, and Jose M. Torralba, “Sinterability and Properties of Cr-Mo Prealloyed Low Alloy Steels Astaloy CrmR”, Advances in Powder Metallurgy and Particulate Materials, 2002, part .8, pp. 15-28.

[23] U. Engstrom, D. Milligan and A. Klekovkin, “Mechanical Properties of High Performance Chromium Materials”, Advances in Powder Metallurgy and Particulate Materials, 2006, part .7, pp. 21-32.

[24] A. Molinari, J. Kazior, and G. Straffelini, “Investigation of Liquid-Phase Sintering byImage Analysis”,Materials Characterization, 1995, Vol.34, pp. 271-276.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔