(3.238.130.97) 您好!臺灣時間:2021/05/18 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高皓倫
研究生(外文):Hao-Lun Kao
論文名稱:兩相流分析單蛇式質子交換膜燃料電池
論文名稱(外文):Single Serpentine Two-Phase Flow Numerical Study on PEMFC
指導教授:邱青煌
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:車輛工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:91
中文關鍵詞:兩相流質子交換膜燃料電池PEMFC單蛇流道
外文關鍵詞:Two-phase flowPEMFCCOMSOLSingle serpentine channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文是藉由COMSOL軟體來模擬質子交換膜燃料電池,使用多重物理量藕合的方式,建立三維的燃料電池模型,並以此模型為基準,來分別模擬單相、兩相的半電池與全電池。而在模擬的區域當中,半電池為流道、擴散層、觸媒層,而全電池則包含了陰極和陽極兩端的流道、擴散與觸媒層,並加入質子交換膜層。而結果探討當中雖然仍包含兩者間的差異性探討,但是經仔細評估後,參數修改的部份其重點將會放在雙相流半電池模型上。
此研究之中使用了連續方程式、Navier-Stokes方程式來描述反應氣體以及生成物在燃料流道、擴散層、觸媒層和交換膜層的流動情形和壓力分佈。再透過Maxwell-Stefan方程式計算燃料氣體的擴散和對流,以及燃料氣體的生成與消耗情況。電位是利用電荷守恒方程式求得。此外電化學反應則是利用Butler-Volmer方程式來描述。
主要研究重點是在比較單、兩相的半電池預全電池的差異性,可發現由於單相流的性能往往都會高過實驗值的性能曲線,反而是兩相流的模擬值,比較會靠近實驗值,而半電池和全電池的性能其實差異不大,但計算時間卻相差甚多,因此使用半電池來模擬即可。


The study creates a two-dimensional two-phase proton exchange membrane fuel cell model by COMSOL Multiphysics. The calculated region has contained anode and cathode gas diffusion layers, catalyst layers and proton exchange membrane.
This study uses the continuity equation and Brinkman equation to describe the reactant gas, production flow, the pressure distribution in the gas-diffusion layers, and catalyst layers. The Maxwell-Stefan equation is used to calculate species transport of multi-component mixture gas. The potential is described using charge conservation equation. The electrochemical reaction is calculated using Butler-Volmer equation .
The main research focus is on comparing half-cell model with full-cell model for single-phase and two-phase. The performance of single-phase flow will be higher than the experimental values of the performance curve, but it is two-phase analog value, so it gets close to the experimental value. The half-cell and full-cell performance actually has little difference, but the computation time, which is considerably different, can be used to simulate the half-cell.


摘要 ……………………………………………………………………………..i
Abstract …………………………………………………………………….…..iii
致謝 …………………………………………………………………..………..iv
目錄 ………………………………………………………………………...…..v
表目錄 ………………………………………………………………………..viii
圖目錄 ……………………………………………………………………..…..ix
符號說明 ……………………………………………………………….……..xii
第一章 緒論 ……………………………………………………………...……1
1.1前言 ……………………………………………………….…..………1
1.2 文獻回顧 ………………………………………...………….…..……2
1.2.1 數值模型的建立 ……………………………………..…...……2
1.2.2 模型流道的差異 ……………………………………..…...……4
1.2.3 反應機制和極化現象 ……………………………..…...………6
1.3 研究目的 …………………………………………………..…………8
第二章 理論背景 ……………………………………………………...………9
2.1 燃料電池的起源 ………………………………………….….………9
2.2燃料電池的基本原理 …………………………………….….………11
2.3燃料電池的優點 ………………………………….……….…………11
2.4燃料電池的缺點 …………………………………….………….……13
2.5 質子交換膜燃料電池的基本構造 ………………….….…………...13
2.5.1 雙極板 ………………………………………..………...………15
2.5.2 氣體擴散層 ………………………………….….……...………16
2.5.3 觸媒層 …………………………………………..………...……16
2.5.4 質子交換膜 ………………………………………..……...……18
2.6 燃料電池的種類 ……………………….…………………...………18
2.7 燃料電池的特性 ……………………………….………………...…22
2.8 燃料電池的水管理 …………………………….…………...………25
第三章 理論模型與假設 ………………………………………….…………26
3.1 COMSOL Multiphysics簡介 ………………….……………………26
3.2 模型假設 ……………………………………….……………...……27
3.3 統御方程式 …………………………………….…………...………28
3.3.1 連續方程式 ………………………………..…...………………28
3.3.2 動量方程式 ………………………………..…………...………29
3.3.3 氣體傳輸方程式 ……………………………..………...………30
3.3.4 電荷守恆方程式 ………………………………..……...………32
3.3.5 巴特勒-沃爾默(Butler-Volmer)………………..…….……33
3.3.6 兩相流 ……………………………………………....…….……34
3.3.7 其他相關方程式 ………………………..……………..….……35
3.4 邊界條件 ……………………………………….………...…………37
3.5 網格數驗證 ………………………………….……………...………39
3.6 模型驗證 …………………………………….………………...……40
第四章 結果與討論 ………………………………………………….………48
4.1 全電池與半電池的差異性比較 …………….……………...………49
4.2 單相流與兩相流的差異性比較 ………….…………………...……54
4.3兩相流半電池模型下的參數修改 ………….………………………58
4.3.1 改變燃料流量對燃料電池性能的影響 ……….….……...……58
4.3.2 改變燃料電池溫度對性能的影響 ……………..……….…..…67
4.3.3 改變孔隙率對燃料電池性能的影響 ………………..……...…73
第五章 結論 …………………………………………………….……………79
第六章 建議 ………………………………………………………….………81
參考文獻 …………………………………………………………...…………82
Extened Abstract ……………………………………………………………….85
簡歷 …………………………………………………………………………...91


[1]. Jer-Huan Jang, Wei-MonYan, Hung-Yi Li, Wei-Che Tsai, “Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields”, International Journal of Hydrogen Energy, Vol.33, pp.156-164, 2008.
[2]. Lan Sun , Patrick H. Oosthuizen , Kim B. McAuley “A numerical study of channel-to-channel flow cross-over through the gasdiffusion layer in a PEM-fuel-cell flow system using a serpentine channel”, International Journal of Thermal Sciences, Vol.45, pp.1021-1026, 2006.
[3]. S. Shimpalee , S. Greenway, J.W. Van Zee “The impact of channel path length on PEMFC flow-field design”, Journal of Power Sources, Vol.160, pp.398-406, 2006.
[4]. Maher A.R. Sadiq Al-Baghdadi “Performance comparison between airflow-channel and ambient air-breathing PEM fuel cells using three-dimensional computational fluid dynamics models”, Journal of Power Sources, Vol.34, pp.1812-1824, 2009.
[5]. Chin-Tsan Wang , Yuh-Chung Hu, Pei-Lun Zheng “Novel biometric flow slab design for improvement of PEMFC performance”, Applied Energy, Vol.87, pp.1366-1375, 2010.
[6]. S. Shimpalee, J.W. Van Zee “Numerical studies on rib&channel dimension of flow-field on PEMFC performance”, International Journal of Hydrogen Energy, Vol.32, pp.842-856, 2007.
[7]. Phong Thanh Nguyen, Torsten Berning1, Ned Djilali “Computational model of a PEM fuel cell with serpentine gas flow channels ”, Journal of Power Sources, Vol.130, pp.149-157, 2004.
[8]. T. Berning , D.M. Lu , N. Djilali “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell”, Journal of Power Sources, Vol.106, pp.284-294, 2002.
[9]. Rajesh Boddu, Uday Kumar Marupakula, Benjamin Summers, Pradip Majumdar “Development of bipolar plates with different flow channel configurations for fuel cells”, Journal of Power Sources, Vol.189, pp.1083-1092, 2009.
[10]. E. Hontanon a, M.J. Escudero a, C. Bautista a, P.L. Garc’ıa-Ybarra a, L. Daza“Optimisation of flow-field in polymer electrolyte membrane fuel cell susing computational fluid dynamics techniques”, Journal of Power Sources, Vol.86, pp.363-368, 2000.
[11]. Kap-Seung Choi a, Hyung-Man Kim a, Sung-Mo Moon“Numerical studies on the geometrical characterization ofserpentine flow-field for efficient PEMFC”,International Journal of Hydrogen Energy, Vol.36, pp.1613-1627, 2011.
[12]. Yuh Ming Ferng, Ay Sub “Athree-dimensional full-cell CFD model used to investigate the effects of different flowchannel designs on PEMFC performance ”, International Journal of Hydrogen Energy, Vol.32, pp.4466-4476, 2007.
[13]. Guilin Hu, Jianren Fan, Song Chen, Yongjiang Liu, Kefa Cen “Three-dimensional numerical analysis of proton exchange membrane fuelcells (PEMFCs) with conventional and interdigitated flow fields ”, Journal of Power Sources, Vol.136, pp.1-9, 2004.
[14]. Philip L. Hentall, J. Barry Lakeman, Gary O. Mepsted, Paul L. Adcock“New materials for polymer electrolyte membrane fuel cell current collectors”, Journal of Power Sources, Vol.80, pp.235-241, 1999.
[15]. Atul Kumar, Ramana G. Reddy “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources, Vol.113, pp.11-18, 2003.
[16]. N. Rajalakshmi, T.T. Jayanth, R. Thangamuthu, G. Sasikumar, P. Sridhar,K.S. Dhathathreyan“Water transport characteristics of polymer electrolyte membrane fuel cell”, International Journal of Hydrogen Energy, Vol.29, pp.1009-1014, 2004.
[17]. TaeJooKim, JongRokKim, CheulMuuSim, SeungWookLee, MassoundKaviany, SangYoungSon, MooHwanKim “Experimental approaches for distribution and behavior of water in PEMFC under flow direction and differential pressure using neutron imaging technique”, Nuclear Instruments and Methods in Physics Research A, Vol.600, pp.325-327, 2009.
[18]. Jenn-Kun Kuo, Cha’o-Kuang Chen “Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle”, Journal of Power Sources Vol.162, pp.1122-1129, 2006.
[19]. Young-GiYoon,Won-Yong Lee, Gu-Gon Park, Tae-HyunYang, Chang-Soo Kim “Effects of channel and rib widths of flowfield plates on the performance of aPEMFC”,International Journal of Hydrogen Energy, Vol.30, pp.1363-1366, 2005.
[20]. B.R. Friess, M. Hoorfar “Development of a novel radial cathode flow field for PEMFC”,International Journal of Hydrogen Energy, Vol.37, pp.7719-7729, 2012.
[21]. Hyunchul Ju, Hua Meng, Chao-Yang Wang “A single-phase, non-isothermal model for PEM fuel cells”, International Journal of Heat and Mass Transfer, Vol. 48, pp.1303-11315, 2005.
[22]. Christian Siegel, “Two-Dimensionsl, Non-Isothermal, Two-phase Flow inside the Gas Diffusion Layer Unit of the Polymer Electrolyte Membrane Fuel Cell,” Excerpt from the Proceedings of the COMSOL Users Conference 2006 Frankfurt.
[23].黃鎮江,“燃料電池”,全華科技圖書出版社,2005.
[24].衣寶廉,“燃料電池-原理與應用”,五南出版社,2005.
[25].林昇佃等,“燃料電池-新世紀能源”,滄海書局,2003.
[26].趙中興,“燃料電池基礎”, 全華科技圖書出版社,2008.
[27].黃錦煌、吳佐群,“輕鬆易學有限元素分析大師-FEMLAB”,高立出版社,2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊