(3.238.96.184) 您好!臺灣時間:2021/05/12 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖偉廷
研究生(外文):Wei-Ting Liao
論文名稱:機翼釋放具鰭片彈體翻滾、俯仰和偏航率紊流模擬
論文名稱(外文):Turbulent Simulations of Rolling, Pitching and Yawing Rates of a Store with Fins Released from a Wing
指導教授:楊世英楊世英引用關係
指導教授(外文):Shih-Ying Yang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:航空與電子科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:118
中文關鍵詞:彈體分離紊流參數效應
外文關鍵詞:StoreSeparationTurbulent flowsParametric effects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  在飛機與彈體進行分離時,將彈體順利地擊中目標物雖然重要,但如果所釋放之彈體撞擊到母體本身而導致損壞這並不是我們想看到的,所以能將彈體順利分離也是值得關注的一環,本文應用ESI CFD FASTRAN 商用軟體研究紊流通過機翼釋放具鰭片彈體之參數效應,在卡式座標系統下求解三維非穩態Navier-Stokes方程式及k-ε紊流模式,採用雙區塊Chimera網格系統,不同區塊網格系統重疊部分相互自動傳遞資訊,為驗證本文計算的正確性,彈體重心瞬間軌跡與翻滾、俯仰、偏航角度、瞬間速度、角速度計算結果與實驗值比較後,趨勢分佈非常接近,並改變流場馬赫數、前後施力同時倍增、僅前施力倍增與飛行攻角等四種參數值以探討分離彈體非穩態物理現象。馬赫數增加時,彈體俯仰角最大值出現時間增快且俯仰角隨馬赫數增加而降低,偏航角則增加;俯仰率最大值遞減,而偏航率最大值出現時間則提前。

  As for the release of store from the aircraft, it is important that the target is hit and destroyed by the stores. However, it will not be allowed and expected if the mother aircraft is hit and damaged by the store it releases. Consequently, smooth separation of store and aircraft is also concerned. In this article, ESI CFD FASTRAN is the commercial software applied to study the parametric effects of turbulent flows around a store with fins released from a wing. The three-dimensional, unsteady Navier-Stokes equations and k-ε turbulent model are solved in the Cartesian coordinate system. The Chimera two-block grid system is utilized, and grid communication among two blocks are automatically implemented. To evaluate the accuracy of the present calculation, the calculated instantaneous trajectory of center of gravity of store, angles of roll, pitch and yaw, velocity and angular rate are compared with those of experimental data. The satisfactory agreement is achieved. Then, computations of different values of Mach number, both forward and rearward forces applied on the store, single forward force applied on the store, and angle of attack are carried out to investigate the unsteady physical phenomena of separated store. The angle of pitch of store will be reduced and time of maximum angle of pitch will be shortened if Mach number is increased. Meanwhile, angle of yaw will be enlarged and maximum value of pitching rate will be decreased. Time of maximum yawing rate will be shortened as well.

目錄

中文摘要 ………………………………………………………... i
英文摘要 ………………………………………………………... ii
誌謝 ………………………………………………………... iv
目錄 ………………………………………………………... v
表目錄 ………………………………………………………... viii
圖目錄 ………………………………………………………... ix
符號說明 ………………………………………………………... xiii
第一章 前言…………………………………………………... 1
1-1 研究動機……………………………........................... 1
1-2 研究目的……………………………........................... 3
1-3 參考文獻………………………………....................... 4
第二章 分析……………………………………………........... 11
2-1 物理模式……………………………………………... 11
2-2 Flow Field Conservation Equations.............................. 12
2-2-1 Flow Field Conservation Equations in a Non-Moving
Frame............................................................................. 12
2-2-2 Flow Field Conservation Equations for Moving / Deforming Volumes...................................................... 14
2-3 Equations of Motion...................................................... 16
2-4 Turbulence Modeling.................................................... 20
2-4-1 Standard k-εModel...................................................... 21
2-5 Chimera methodology................................................... 26
2-5-1 Alternating Digital Tree................................................ 31
2-5-2 Hole-cutting Algorithm................................................. 31
2-5-3 Interpolation Algorithm................................................. 41
2-6 Spatial Numerical Method............................................. 47
2-7 Flowfield Solution Procedure........................................ 51
第三章 數值方法及驗證........................................................... 53
3-1 研究方法………………………………………........... 53
3-2 網格系統配置……………………………………....... 53
3-3 程式測試與驗證………………………………........... 54
3-3-1 三維紊流通過機翼釋放具鰭片彈體暫態網格密度測試............................................................................... 54
3-3-2 紊流與歐拉通過機翼釋放具鰭片彈體暫態計算結果驗證........................................................................... 56
第四章 三維流場彈體分離之結果與參數探討....................... 58
4-1 概論……………………………………………........... 58
4-2 機翼、派龍與彈體幾何外型配置............................... 58
4-2-1 機翼幾何形狀............................................................... 58
4-2-2 派龍幾何形狀............................................................... 59
4-2-3 彈體幾何形狀............................................................... 59
4-3 機翼、派龍與彈體網格格點配置............................... 61
4-4 流場參數設置............................................................... 62
4-4-1 非穩態系統參數設置................................................... 62
4-5 機翼、派龍與彈體參數探討....................................... 63
4-6 三角翼釋放有/無鰭片彈體紊流場探討...................... 63
4-7 流場馬赫數變化之探討............................................... 67
4-8 前後施力同時倍增之探討........................................... 69
4-9 攻角變化之探討........................................................... 72
4-10 前施力倍增而後施力不變之探討............................... 75
4-11 最佳化釋放彈體........................................................... 78
4-12 機翼與彈體無法順利分離........................................... 79
第五章 結論............................................................................... 80
參考文獻 ………………………………………………………... 110
Extend Abstract ……………………………………………………....... 115
簡歷 ………………………………………………………... 118


[1]Wang Z. J., and Parthasarathy, V., “A Fully Automated Chimera Methodology for Multiple Moving Body Problems,” Int . J . Numer . Meth . Fluids, pp. 919-938, 2000.
[2]Nathan, C., Prewitt, D., Belk, M., and Wei, S.,“Parallel Computing of Overset Grids for Aerodynamic Problems with Moving Objects,”J. Progress in Aerospace Sciences, 36, pp. 117–172, 2000.
[3]Anandhanarayanan, K.“Development of Three-Dimensional Grid-free Solver and Its Applicationns to Multi-Body Aerospace Vehicles,” Defence Science Journal, Vol. 60, No. 6, pp. 653-662, November 2010.
[4]Anandhanarayanan, K. “Grid-Free Kinetic Upwind Solver on Chimera Cloud of Points,” West-East High Speed Flow Field Conference, 19-22, November 2007.
[5]Bandu, N. P., Tartabini , Brett, R. S.“Ascent , Stage Separation and Glideback Performance of a Partially Reusable Small Launch Vehicle,” AIAA-2004-0876, pp. 1-16, October 2004.
[6]Ko, S., and Kim, C.,“Separation Motion of Strap-on Boosters with Base Flow and Turbulence Effects,” Journal of Spacecraft and Rocket, Vol. 45, No. 3, pp. 485-494, 2008.
[7]Dimitri, E., Bigarella, V., Luiz, J., Azevedo, F., and Scalabrin, L. C., “Centered and Upwind Multigrid Turbulent Flow Simulations of Launch Vehicle Configurations,” Journal of Spacecraft and Rockets, Vol. 44, No. 1, pp. 52-65, January-February 2007.
[8]ESI group CFD portal , Unsteady Simulation of a Tank Dropping from a Wing , 2007. http://www.esi-cfd.com/component/ option,com_rapidrecipe
/page, viewrecipe/recipe_id , 61/ Itemid ,2006 .
[9]Liu, J. L.,“Trajectory Analyses of External Store Separation by Using the Euler Equations,” Journal of Aircraft, Vol. 40, No. 1, pp. 206-208, 2003.
[10]Shalaev, V. I., and Fedorov, A. V.,“Dynamics of Slender Bodies Separating from Rectangular Cavities,” AIAA Journal, Vol. 40, No. 3, pp. 517-525, 2002.
[11]Taylor, R. T., and Alford, W.,“A Wind Tunnel Investigation of the Carry Loads and Mutual Interference Effects of 1/40 Scale Models of the X-15 and B-52 Airplanes in Combination,” NASA TM X-184, 1959.
[12]Dimitri, E., Bigarella, V., Luiz, J., and Azevedo, F.,“Numerical Study of Turbulent Flows over Launch Vehicle Configuration,” Journal of Spacecraft and Rockets, Vol. 42, No. 2, pp. 266-277, March-April 2005.
[13]Liu, X., and Fu, S.,“Numerical Simulation of Compressible Separated Turbulent Flow Over Inclined Slender Body,” Journal of Spacecraft and Rockets, Vol. 42, No. 3, pp. 572-575, May-June 2005.
[14]Eugene, K., Jang, H. K., and Hyuk, P.,“Prediction of Ballistic Separation Effect by Direct Calculation of Incremental Coefficients,” Journal of Aircraft, Vol. 47, No. 2, pp. 630-637, March-April 2010.
[15]Lijewski, E. L., and Suhs, N. E.,“Time-Accurate Computational Fluid Dynamics Approach to Transonic Store Separation Trajectory Prediction,” Journal of Aircraft, Vol. 31, No. 4, pp. 886-891, July-Aug 1994.
[16]Paresh Parikh., Shahyar Pirzadeh., and Neal Frink, T., “Unstructured Grid Solutions to a Wing/Pylon/Store Configuration,” Journal of Aircraft, Vol. 31, No. 6, pp. 1291-1296, November-December 1994.
[17]NathanC. P., Davy M. B., and Raymond, C. M.,“Multiple-Body Trajectory Calculation Using the Beggar Code,” Journal of Aircraft, Vol. 36, No. 5, pp. 802-808, September-October 1999.
[18]Wang, Z. J., CPhen, R. F., Hariharan, N., Przekwas, A. J., and Grove, D.,“A 2N Tree Based Automated Viscous Cartesian Grid Methodology for Feature Capturing,” AIAA-99-3300, pp. 1-11, 1999.
[19]Ching, K. T.,“Grid Survey Approach to Store Separation Trajectory Prediction,” Journal of Aircraft, Vol. 37, No. 4, pp. 736-738, 2000.
[20]Young, M. J. , Young, S. K., Jae, W. L., and Jun, S. P.,“Effect of C.G. and Control Surface Area on Supersonic Separation of an Air-launching Rocket from the Mother Plane,”Aerospace Science and Technology, pp. 19-25, 2010.
[21]Robert, F. T., Frank, C. W., and William, Z. S.,“Simulation of Store Separation for the F/A-18C Using Cobalt,” Journal of Aircraft, Vol. 37, No. 3, May-June 2000.
[22]Murman, S. M., Aftosmis, J. M., and Berger, M. J.,“Simulations of 6-DOF Motion with a Cartesian Method,” AIAA paper, NO. 2003-1246, 2003.
[23]Murman, S. M., Aftosmis, M. J., Berger M. J.,“Simulations of Store Separation from an F/A-18 with a Cartesian Method,” Journal of Aircraft, Vol. 41, No. 4, July-August 2004.
[24]Malmuth, N. D.,“Theoretical Aerodynamics in Today''s Real World : Opportunities and Challenges,” AIAA Journal, Vol. 44, No. 7, pp. 1377-1392, July 2006.
[25]Sahoo, D., Amaswamy, A., and Alvi, F., “Active Store Trajectory Control in Supersonic Cavities Using Microjets and Low-Order Modeling,” AIAA Journal, Vol. 45, No. 3, pp. 516-532, March 2007.
[26]Elias, E. P., and Spyridon D. K.,“CFD Transonic Store Separation Trajectory Predictions with Comparison to Wind Tunnel Investigations,” International Journal of Engineering, Vol. 3, Issue. 6, pp. 538 - 553, January, 2010.
[27]Gong, J., Zhou, Z., and Liu, B., “Using the Unstructured Dynamic Mesh to Simulate Multi-Store Separating from Aircraft,”Procedia Engineering , 16, pp. 572-580, 2011.
[28]Yang, S. Y., Line, C. C., and Liao, W. T., “Numerical Study of Parametric Effects for Transonic Flows around a Store with Fins Released from a Wing,” Journal of Aeronautics, Astronautics and Aviation, Series B, Vol. 44, No. 2, 2012, pp. 99-108.
[29]楊世英 , 廖偉廷 , 連振傑 “紊流通過機翼釋放具鰭片彈體之數值探討,” 中國機械工程學會第二十九屆全國學術研討會,” 論文編號:A02-1246, Dec 2012.
[30]Mohagna J. Pandya., Neal T. Frink., and Ralph W. Noack., “Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver,” 17th AIAA Computational Fluid Dynamics Conference, AIAA 2005-5118, 6 – 9 June 2005.
[31]Hong Luo, Yidong Xia, Seth Spiegel, Robert Nourgaliev, Zonglin Jiang, “A Reconstructed Discontinuous Galerkin Method Based on a Hierarchical WENO Reconstruction for Compressible flows on Tetrahedral Grids,” Journal of Computational Physics, Volume 236, pp. 477-492, 1 March 2013.
[32]Laiping Zhang, Xinghua Chang, Xupeng Duan, Zhong Zhao, Xin He, “Applications of Dynamic Hybrid Grid Method for Three-Dimensional Moving/Deforming Boundary Problems,” Computers & Fluids, Volume 62, pp. 45-63, 15 June 2012.
[33]Mahmood, T., Aizud, M. N., Zahir, S., “Aerodynamic Effects of the Store Release on the Roll Attitude of a Wing Configuration in Transonic Flight,” Proceedings of International Bhurban Conference on Applied Sciences & Technology, pp. 12-15, 10 - 13 January 2011.
[34]Tahir Mahmood, Nadeem Aizud, and Salimuddin Zahir, “CFD Simulations of the Store Separation and its Effect on the Attitude of the Parent Vehicle,” Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), pp. 198-202, 9 - 12 January 2012.
[35]Roy Koomullil, Gary Cheng, Bharat Soni, Ralph Noack, Nathan Prewitt, “Moving-Body Simulations using Overset Framework with Rigid Body Dynamics,” Mathematics and Computers in Simulation, Volume 78, Issues 5–6, pp.618-626, September 2008.
[36]CFD-FASTRAN Theory Manual, Version 2003, CFDRC Research Corporation, May 2003.
[37]CFD-FASTYRANTM Demonstrations and Validations Manual, Version 2003,CFD Research Corporation, May, 2003.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔