(3.236.222.124) 您好!臺灣時間:2021/05/13 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余柏緯
研究生(外文):Bo-Wei Yu
論文名稱:應用於航空通訊之基板集成波導天線設計
論文名稱(外文):Design of Substrate-Integrated-Waveguide Antennas for Application in Aircraft Communication
指導教授:劉文忠劉文忠引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:航空與電子科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:73
中文關鍵詞:全向性基板集成波導槽孔圓極化航空通訊天線
外文關鍵詞:omni-directionalsubstrate-integrated-waveguidesslotcircular polarizationaircraftantenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出了一種低剖面(Low profile)且結構簡單之具有全向性(Omni-directional)場型的基板集成波導(Substrate-integrate-waveguide)槽孔天線,本設計使用50歐姆的微帶線(Micro-strip line),並在其末端加上漸進式的椎狀(Taper)作為饋入,以獲得更好的阻抗匹配,然後將金屬通孔(Via holes)排列成朝上之半圓形及朝下的瓶蓋形,並組合構建為基板集成波導,接下來加入方形槽孔,並將槽孔上方兩側的方塊作消除,以及移除槽孔中間下方的方塊,最後在背板(Background)增加一橫狀槽孔,藉著修改及調整上述三個位置的參數,使天線能達到360度均勻的電磁輻射,最後運用孔洞與槽孔(Slot)之間的耦合效應得到良好的阻抗頻寬與達到最佳的全向性場型。本文所提出之全向性槽孔天線,頻帶位於4.19~4.39 GHz,頻寬約可達200 MHz,中心頻率為4.29 GHz,阻抗頻寬約4.7%。經過模擬與實際量測趨勢相近的結果可知,本論文提出的天線符合預期之理想設計。
本論文的另一研究為具有圓極化特性之基板集成波導槽孔天線,使用微帶線為饋入端,利用這個部分與基板連結,再將金屬通孔與上方的做分割,加上本身天線基板的特殊設計,以及在基板內增加一橫向與直列式的槽孔,組合成一個90度之顛倒L型槽孔,藉由調整各自的槽孔長度及寬度,使槽孔在基板內產生兩個振幅相等且正交電場的相位差達90度,而激發出圓形極化電磁波。本文提出之圓極化槽孔天線,中心頻率為5.25 GHz,頻帶為5.16~5.35 GHz,頻寬約190 MHz,阻抗頻寬約3.7%,另外軸比頻寬約1.1%,本天線經過模擬與量測可驗證兩者之結果一致,可以符合並應用於WLAN IEEE-802.11a, b, g, n商用頻段的規範。


In this thesis, a simple and low-profile substrate-integrated-waveguide (SIW) slot antenna with omni-directional radiation pattern has been presented. The 50 ohm micro-strip line coupled with progressive taperd stripline was used as the feeder. For reaching the better impedance matching, via holes were arranged in shapes like the the downward bottle cap and the upward semi-circle,and thus made the antenna into a SIW structure. Based on this prototype, a rectangular slot without digging at its two top coners and a vertical slot at the lower middle position of the rectangular slot, and finally, a horizontal slot on the grounded back plane were arranged to the prototype. By way of adjusting both position and dimension of these slots, proper electromagnetic coupling effect between the vial holes and slots was obtained and forms a uniform current distribution for 360?omni-directional radiation. An optimal antenna design with good impedance matching and omni-directional pattern was finally obtained.
Prototype of the proposed design has been constructed and experimentally studied. The measured results show that the antenna, resonanting at 4.29 GHz, has an 10 dB impedance bandwidth of 200 MHz, or 4.7 %. The obtained omni-direction performance is suitable for use in the aircraft communication system.
As for the other study of this thesis, a substrate-integrated-waveguide slot antenna featuring circular polarization has been proposed. Also, this antenna is fed by a micro-strip line and which was linked to the substrate. The via holes were arranged around the side of top plane. To further enhancing the circular-polarization bandwidth, an L-shaped slot was embedded on the radiating plane. From carefully adjusting the respective dimensions of the slot, two surface current distributions with nearly equal amplitude and 90? phase difference was achieve and thus results in function of circular polarization. The main resonant frequency of this proposed antenna is 5.25 GHz and frequency band is 5.16 to 5.35 GHz with a bandwidth of about 190 MHz, which is 3.7% with respect to the main resonant frequency. Agreement between the simulation and measurement seems good and the proposed design is suitable for use in the WLAN IEEE-802.11a, b, g, n communication systems.


中文摘要-------------------------------------------------------------------------------------------i
英文摘要-----------------------------------------------------------------------------------------iii
誌謝-----------------------------------------------------------------------------------------------v
圖目錄--------------------------------------------------------------------------------------------viii
表目錄-------------------------------------------------------------------------------------------xiv
第一章 序論------------------------------------------------------------------------------------1
1.1 前言------------------------------------------------------------------------------------1
1.2 文獻回顧------------------------------------------------------------------------------3
1.3 內容提要------------------------------------------------------------------------------7
第二章 槽孔與基板集成波導理論-------------------------------------------------------8
2.1 麥斯威爾方程式-------------------------------------------------------------------8
2.2 槽孔天線理論----------------------------------------------------------------------9
2.2.1 槽孔的起源------------------------------------------------------------------------9
2.2.2 槽孔天線與電磁場的交互關係------------------------------------------------11
2.2.3 巴俾涅原理------------------------------------------------------------------------11
2.3常見的波導方法-----------------------------------------------------------------------14
第三章 裝載於經國號戰機之全向性基板集成波導天線設計----------------------30
3.1 簡介----------------------------------------------------------------------------------30
3.2 設計理念----------------------------------------------------------------------------31
3.3 結構設計----------------------------------------------------------------------------34
3.3.1 結構參數探討---------------------------------------------------------------------34
3.4 量測結果與討論------------------------------------------------------------------43
第四章 具圓極化特性之基板集成波導天線設計-------------------------------------49
4.1 簡介----------------------------------------------------------------------------------49
4.1.1天線極化介紹--------------------------------------------------------------------------------49
4.2 天線結構與設計理念-------------------------------------------------------------53
4.3 結構參數探討----------------------------------------------------------------------59
4.4 量測結果與討論-------------------------------------------------------------------67
第五章 結論----------------------------------------------------------------------------------71
參考文獻--------------------------------------------------------------------------------------------------72
論文發表--------------------------------------------------------------------------------------------------73


[1] G. A. Deschamps, “Microstrip Microwave Antenna,” 3rd USAF Symposium on Antenna, 1953.
[2] R. H. Chen, Y. C. Lee, and J. S. Sun, “Design of a Compact Dual-Band Loop-Slot Antenna,” PIERS Proceedings, Beijing, China, pp. 23-27, Mar. 2009.
[3] Z. X. Zeng, W. Hong, K. Zhengi, and H. J. Tang,“ The Design and Experiment of a Dual-band Omnidirectional SIW Slot Array Antenna”, Proceedings of Asia-Pacific Microwave Conference pp. 1-4, 2007.
[4] D. K. Cheng, “Field and wave electromagnetics,” pp. 340-343, Jan. 1989
[5] W. S. Chen and K. Y. Ku, “Band-rejected design of the printed open slot antenna for WLAN/WiMAX operation,” IEEE Trans. Antennas Propag., Vol. 56, No. 4, pp. 1163–1169, Apr. 2008.
[6] S. Yun, D. Y. Kim, and S. Nam, “Bandwidth and Efficiency Enhancement of Cavity-Backed Slot Antenna Using a Substrate Removal,” IEEE Trans. Antennas and Propagat, vol.11, pp. 1458-1461, 2004.
[7] J. R. Jimenez and E. Hita, “Babinet’s principle in scalar theory of diffraction,” Vol. 8, Issue 6, pp. 495-497, Dec. 2001.
[8] J. Hirokawa, M. Ando, and N. Goto, “Waveguide-Fed Parallel Plate Slot Array Antenna,” IEEE Trans. Antennas Propag., Vol. 40, No. 2, pp.218 – 223, Feb. 1992.
[9] D. Deslandes and K. Wu, “Integrated transition of coplanar to rectangular waveguides,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 619-622, 2001.
[10] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 66-73, 2005.
[11] Y. X. Wang, R. H. Jin, G. P. Geng, and X. L. Liang, “Exact SLF/ELF underground HEDfield strengths in earth-ionosphere cavity and Schumann resonance,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 3031-3039, 2011
[12] F. Mira, M. Bozzi, F. Giuppi, L. Perregrini, and A Georgiadis, “Calibrated space-mapping approach for the design of SIW filters," 2010 European Microwave Conference (EuMC), pp. 365-368, Sep. 2010.
[13] W. Hong, B. Liu, Y. Q. Wang, Q. H. Lai, and K. Wu, “Half mode substrate integrated waveguide: a new guided wave structure for microwave and millimeter wave application,” Proc. Joint 31st Int. Conf. Infrared Millim. Waves 14th Int. Conf. Terahertz Electron., pp. 219, 2006.
[14] S. Chakraborty and U. Mukherjee, “Comparative study of micro strip patch line feed and coaxial feed antenna design using genetic algorihms,” Computer and Communication Technology (ICCCT), pp. 203-208, 2011.
[15] B. Kelothu, K. R. Subhashini, and G. L. Manohar. “A compact high-gain microstrip patch antenna for dual band WLAN applications,” Engineering and Systems (SCES), pp. 1-5, 2012.
[16] D. Halliday, R. Resnick, and J. Walker, “Fundamental of Physics 7th,” pp. 897–899, 2005.
[17] X. L. Bao, M. J. Ammann, and P. McEvoy, “Microstrip-fed wideband circularly polarized printed antenna”, IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3150 -3156, 2010.
[18] T. Meissner and F. Wentz, "Polarization rotation and the third Stokes parameter: The effects of spacecraft attitude and Faraday rotation," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 3, pp. 506-515, 2006.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔