(18.232.50.137) 您好!臺灣時間:2021/05/07 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳文濱
研究生(外文):Wen-Bin Chen
論文名稱:藉由整合極化多工及無線正交分頻多工技術於光分碼多重擷取之微波光纖網路研究
論文名稱(外文):Performance Analysis of OFDM-OCDMA with Polarization Multiplexing Scheme for Radio-over-Fiber Transmissions
指導教授:顏志達顏志達引用關係
指導教授(外文):Chih-Ta Yen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:94
中文關鍵詞:微波光纖網路光分碼多重擷取系統正交分頻多工技術Walsh-Hadamard codes
外文關鍵詞:radio-over-fiber(RoF)optical code-division multiple-access(OCDMA)orthogonal frequency division multiplexing(OFDM)Walsh-Hadamard codes(WHC)
相關次數:
  • 被引用被引用:3
  • 點閱點閱:434
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由整合光分碼多重擷取系統、無線正交分頻多工及極化多工技術,提出一個具有高傳輸速率以及資料安全性的微波光纖網路架構。在此系統中,我們使用Walsh-Hadamard codes(WHC)來做為基地站(Base Station, BS)的字碼(codeword),並且藉由每組WHC之間擁有固定互相關值的特性,在接收端利用平衡檢測的方式來有效消除基地站之間的干擾。在模擬軟體方面,本論文主要是採用商業光通訊模擬軟體Optisystem以及Matlab來進行模擬。經模擬過後發現,在單一BS且使用背對背(back-to-back)的傳輸方式下,傳輸光雙邊載波訊號能比光單邊載波訊號得到更好的系統效能,且位元錯誤率(Bit Error Rate, BER)會隨著輸入光功率增加而減少。另外,傳輸距離方面,在受衰減因素影響,於傳輸光雙邊載波訊號架構以及BER為 的情況下,傳輸距離可達80公里。除此之外,本論文針對色散以及極化色散分別提出補償機制來進行補償,根據模擬結果顯示,此兩種補償機制能個別有效的抑制色散以及極化色散對訊號所造成的影響,進而大幅提高系統效能。最後,因受限於硬體的限制,所以採用數學理論推導方式來對多BS情況下進行系統效能分析。分析結果顯示,在相同條件下,本論文所提出的系統架構能比傳統的光分碼多重擷取系統提供更多的BS數量。

In this thesis, we proposed a novel radio-over-fiber (RoF) system which by integrating wireless orthogonal frequency division multiplexing (OFDM) and polarization multiplexing technique with the spectral-coding optical code-division multiple-access (OCDMA) network. This system is not only providing high transmitting rate but also the signal security of the transmitted data. In addition, we adopt quasi-orthogonal Walsh-Hadamard codes (WHC) that with fixed cross correlation value as the codeword for each base station. With this property, the multiple access interference (MAI) can be efficiently eliminated by using the balance detection scheme at the receiver end. The simulation results of different source power and transmission distance are presented by commercial optical simulation software of Optisystem version 10. The simulation results show that the system can obtain better performance when transmitted optical double sideband signal than single sideband signal in single base station scenario. It also shows bit-error-rate (BER) will decrease as the source power increase. And the transmission distance can approach 80 kilometer that with the attenuation influence when the BER is . The dispersion compensation fiber (DCF) and polarization delay element are used in the proposed system which can efficiently suppress the chromatic dispersion and polarization mode dispersion influence in long-haul transmitted distance. Due to the hardware limitation, the system performance of multiple base station scenarios calculates by mathematical method. The mathematical derivation results show that the proposed system can offer more number of active base stations than the conventional spectral-coding OCDMA network in RoF system.

摘要...................................i
Abstract...............................ii
誌謝...................................iv
目錄...................................v
表目錄.................................vii
圖目錄.................................viii
第一章 緒論............................1
1.1 何謂光纖到府.......................1
1.2 何謂微波光纖網路...................1
1.3 正交分頻多工技術簡介...............2
1.4 研究動機...........................4
1.5 文獻回顧...........................5
1.6 論文大綱...........................7
第二章 相關技術介紹 ....................8
2.1 前言...............................8
2.2 OFDM技術...........................8
2.2.1 OFDM技術-發射端..................9
2.2.2 M-QAM調變........................10
2.2.3 OFDM訊號調變原理.................10
2.2.4 保護區間.........................13
2.2.5 領航符元排列方式.................15
2.2.6 OFDM技術-接收端..................15
2.3 光分碼多重擷取系統.................16
2.3.1 Walsh-Hadamard Codes.............18
2.3.2 馬赫曾德爾調變器.................20
第三章 系統架構與模擬結果分析..........23
3.1 前言...............................23
3.2 Optical OFDM系統接收端架構.........23
3.2.1 直接偵測.........................23
3.2.2 同調偵測.........................27
3.3 Optical OFDM系統模擬結果分析.......30
3.4 極化式OFDM-OCDMA系統架構...............32
3.5 極化式OFDM-OCDMA系統編/解碼運作範例....35
3.6 模擬結果分析........................38
3.6.1 光單邊載波訊號(OSSB)..............39
3.6.2 光雙邊載波訊號(ODSB)..............49
3.6.3 OSSB與ODSB模擬結果比較...........52
3.7 色散與極化色散對系統的影響..........55
3.7.1 色度色散..........................55
3.7.2 模擬結果分析與補償機制(CD)........57
3.7.3 極化色散..........................64
3.7.4 模擬結果分析與補償機制(PMD).......65
第四章 系統效能分析 ....................68
4.1 前言................................68
4.2 系統效能分析........................68
第五章 結論與未來展望..................79
參考文獻...............................81
Extended Abstract......................87
簡歷...................................94


[1] 張政斌,“利用光載波抑制與分離技術實現光纖到家與微波光纖的混合式網路系統”,國立清華大學光電工程研究所,碩士論文,2008。
[2] J. F. Huang, and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE, Photonics Technology Letters, Vol. 12, No. 9, pp. 1252-1254, 2000.
[3] W. Zou, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” Journal of Lightwave Technology, Vol. 19, No. 9, pp. 1274-1281, 2001.
[4] 曾信賓,“架構於陣列波導與光纖光柵之數種光分碼多工編解碼裝置”,國立成功大學電機工程學系,碩士論文,2003。
[5] S. P. Tseng, and J. Wu, ”A new code family suitable for high-rate SAC OCDMA PONs applications,” IEEE Journal on Selected Areas in Communications, Vol. 28, No. 6, pp. 827-837, 2010.
[6] S. P. Tseng, and J. Wu, ”The SAC OCDMA PON with super perfect difference code,” IEEE International Conference on Communications, pp. 1-4, 2011.
[7] J. F. Huang, C. C. Yang, and S. P. Tseng, “Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers,” Optics Communication, Vol. 229, pp. 241-248, 2004.
[8] C. T. Yen, J. F. Huang, Y. T. Chang, and B. H. Chen, “Polarization diversity scheme on spectral polarization coding optical code-division multiple-access network,” Optical Engineering, Vol. 49, No. 12, 2010.
[9] J. F. Huang, and C. T. Yen, “Phase noise suppression in multilevel optical code-division multiple-access network coding system with embedded orthogonal polarizations,” Optical Engineering, Vol. 45, No. 6, 2006.
[10] Y. T. Chang, and J. F. Huang, “Complementary bipolar spectral polarization coding over fiber-grating-based differential photodetectors,” Optical Engineering, Vol. 45, No. 4, 2006.
[11] C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” Journal of Lightwave Technology, Vol. 6, No. 7, pp.1185-1190, 1988.
[12] A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McConnick, “1-Tb/s transmission experiment,” IEEE Photonics Technology Letters, Vol. 8, No. 9, pp. 1264-1266, 1996.
[13] J. F Huang, C. T. Yen, and B. H. Chen, “Phase-noise suppression in optical CDMA network using orthogonal polarization techniques,” Third International Conference on Communications and Networking in China, pp. 1049-1054, 2008.
[14] E. H. W. Chan, and R. A. Minasian, “Suppression of phase-induced intensity noise in optical delay-line signal processors using a differential-detection technique,” IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 2, pp. 873-879, 2006.
[15] E. H. W. Chan, and R. A. Minasian, “Suppression of phase-induced intensity noise in optical delay-line signal processors using a delayed differential technique,” Journal of Lightwave Technology, Vol. 27, No. 22, pp. 5127-5133, 2009.
[16] 潘積桂,“多調分碼多重接取系統結合碼域傳送多樣性之通道估測效能分析”, 國立中山大學通訊工程研究所,碩士論文,2004。
[17] John A. C. Bingham, ADSL, VDSL, and multicarrier modulation, Wiley-Interscience.
[18] Radio broadcasting system: Digital Audio Broadcasting (DVB) to mobile, portable and fixed receiver. ETS 300 401, ETSI-European Telecommunication Standards Institute, 1995.
[19] W. Hoeg, and T. Lauterbach, Digital audio Broadcasting: Principle and applications, John Wiley & Sons.
[20] N. P. Reid, and R. Seide, 802.11(Wi-Fi) networking Handbook, Mc Graw Hill.
[21] IEEE Standards Department, “IEEE 802.11 draft standard for wireless LAN medium access control (MAC) and physical layer (PHY) specification, ” P802.11 D6.1, 1997.
[22] J. Armstrong, “OFDM for optical communications,” Journal of Lightwave Technology, Vol. 27, No. 3, pp. 189-204, 2009.
[23] 黃逸旻,“次世代正交分頻多工存取被動式光網路支援光載波”,國立交通大學電信工程學系,碩士論文,2009。
[24] 郭南宏,“雙向WiMAX上載分波多工被動光纖網路設計”,國立台灣科技大學電子工程系,碩士論文,2009。
[25] A. J. Lowery, and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Optics Express, Vol. 14, No. 6, pp. 2079-2084, 2006.
[26] B. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” Journal of Lightwave Technology, Vol. 26, No. 1, pp. 196-203, 2008.
[27] 翁浚源,“光學正交分頻多工實驗系統”,國立清華大學通訊工程研究所,碩士論文,2010。
[28] 陳清澂,“光學正交分頻多工系統中同調偵測的減少相位雜訊演算法”,國立清華大學通訊工程研究所,碩士論文,2011。
[29] Y. Xingwen, N. K. Fontaine, R. P. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” Journal of Lightwave Technology, Vol. 28, No. 14, pp. 2054-2061, 2010.
[30] H. Bao, and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Optics Express, Vol. 15, No. 8, pp. 4410-4418, 2007.
[31] Y. K. Huang, J. Hu, T. Wang, and P. R. Prucnal, “Virtual I/Q multiplexing in optical code division for secure local area OFDM transport,” Conference on OFC/NFOEC, pp. 1-3, 2008.
[32] Y. K. Huang, T. Wang, and J. Hu, “Virtual I/Q multiplexing in optical code division for secure local area OFDM,” US 0092392 A1, 2009.
[33] W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Optics Express, Vol. 15, No. 16, pp. 9936-9947, 2007.
[34] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Journal of Bell Systems Technical, Vol. 45, pp. 1775-1796, 1966.
[35] R. Chang, and R. Gibby, “A theoretical study of performance of an orthogonal multiplexing data transmission scheme,” IEEE Transactions on Communication Technology, Vol. 16, No. 4, pp.529-540, 1968.
[36] S. Weinstein, and P. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Transactions on Communication Technology, Vol. 19, No. 5, pp. 628-634, 1971.
[37] 許正德,“IEEE 802.16系統之通道估測及等化器設計與實現”,國立中央大學通訊工程研究所,碩士論文,2007。
[38] 溫志宏等編著,正交分頻多重進接技術,滄海書局,台中,2007。
[39] M. Kavehrad, and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” Journal of Lightwave Technology, Vol. 13, No. 3, pp. 534-545, 1995.
[40] J. F. Huang, and C. C. Yang, “Reductions of multiple-access interference in fiber-grating-based optical CDMA network,” IEEE Transactions on Communications, Vol. 50, No. 10, pp. 1680-1687, 2002.
[41] C. C. Yang, J. F. Huang, and S. P. Tseng, “Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers,” IEEE Photonics Technology Letters, Vol. 16, No. 2, pp.641-643, 2004.
[42] 鄭茗仁,“同時傳輸數位與射頻訊號在光纖連結下之研究”,國立中央大學電機工程研究所,碩士論文,2006。
[43] A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Optics Express, Vol. 16, No. 2, pp. 860-865, 2008.
[44] M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” Journal of Lightwave Technology, Vol. 17, No. 10, pp. 1742-1749, 1999.
[45] 原榮等編著,光纖通訊系統原理與應用,新文京開發出版股份有限公司,台北,2004。
[46] W. Shieh, and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electronics Letters, Vol. 42, No. 10, pp. 587-589, 2006.
[47] International Telecommunication Union, “Characteristics of a single-mode optical fiber and cable,” from http://www.itu.int/rec/T-REC-G.652-200911-I/en, 2010.
[48] Thorlabs, “SMF-28-J9 Spec Sheet,” from http://www.thorlabs.com/thorcat/2200/SMF-28-J9-SpecSheet.pdf, 2013.
[49] Thorlabs, “DCF-38 Spec Sheet,” from
http://www.thorlabs.hk/Thorcat/23000/DCF38-SpecSheet.pdf, 2013.
[50] J. Sterba, and D. Kocur, “Pilot symbol aided channel estimation for OFDM system in frequency selective Rayleigh fading channel,” 19th International Conference on Radioelektronika, pp. 77-80, 2009.
[51] H. Bulow, “Limitation of optical first-order PMD compensation,” Technical Digest OFC/IOOC, Vol. 2, pp. 74-76, 1999.
[52] E. D. J. Smith, Richard J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Transactions on Communications, Vol. 46, No. 9, pp. 1176-1185, 1998.
[53] B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” Journal of Lightwave Technology, Vol. 4, No. 11, pp. 1704-1710, 1986.
[54] C. T. Yen, and J. F. Huang, “Realization of OSW/AWG-based bipolar wavelength-time optical CDMA for wired-wireless transmissions,” Optical Fiber Technology, Vol. 15, No. 1, pp. 74-82, 2009.
[55] J. van Wyk, and L. P. Linde, “Bit error probability for a M-ary QAM OFDM-based system,” AFRICON, pp. 1-5, 2007.
[56] B. Schmidt, A. J. Lowery, and J. Armstrong, “Impact of PMD in single-receiver and polarization-diverse direct-detection optical OFDM,” Journal of Lightwave Technology, Vol. 27, No. 14, pp. 2792-2799, 2009.
[57] I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “LDPC-coded OFDM for optical communication systems with direct detection,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 5, pp. 1446-1454, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔