(18.204.227.34) 您好!臺灣時間:2021/05/19 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:范文學
研究生(外文):Van-Hoc Pham
論文名稱:AISI 1045碳鋼在磨合過程的磨潤特性研究
論文名稱(外文):Tribological characteristics of AISI 1045 steel during the running-in process
指導教授:洪政豪洪政豪引用關係
指導教授(外文):Jeng-Haur Horng
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:80
中文關鍵詞:磨合過程摩擦係數真實接觸面積TFPI指數摩擦學摩擦學過渡表面粗糙度
外文關鍵詞:Running-in processFriction coefficientReal contact areaTFPI indexTribologicalTribological transitionsSurface roughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討磨合運轉的磨潤特性變化。文中使用滑塊線接觸相對運動件分析接觸面間之接觸參數,實驗與理論結果發現,接觸寬度與真實接觸面積的增加可能是本實驗條件下提升磨潤性能的主因。
本文的潤滑境域設定於0.36至1.23之間,量測與計算參數包含有:接觸電阻、摩擦係數、試件溫度、表面粗度、真實接觸面積與TFPI指數。在實驗的條件下,就摩擦、真實接觸面積與TFPI三項功能而言,轉速160rpm、負荷60N、粗度0.5~0.7um及轉速320rpm、負荷40N、粗度0.5~0.7um二條件下,經過磨合過程其性能較佳。


This thesis presents tribological characteristics of the running-in process. The contact parameters between mating surfaces during the running-in process were investigated using a ring-on-block line contact device. The experimental and theoretical results indicate that both contact width and real contact area substantially increased during the running-in process. This increase in contact width may be the main reason that the line contact running-in process increases tribological performance between relative surfaces.
In this thesis, the run-in was investigated, and lubrication regimes had λ = (0.36 ~ 1.23). The experiments used line contact modeling to find contact resistance, friction coefficient, specimen temperature and the surface roughness (Ra), which are used to calculate the real contact area and TFPI index. The results returned the following parameters: a speed of 160rpm, an applied load of 60N; and a roughness of Ra(0.50~0.7)μm, or a speed of 320rpm, an applied load of 40N; and a roughness of Ra(0.50~0.70)μm, which has the lowest coefficient of friction. The real contact area is increased to its maximum, and the TFPI gradually decreases.


Abstract..................................................iv
Acknowledgements...........................................v
Table of Contents.........................................vi
List of Tables..........................................viii
List of Figures...........................................ix
List of Abbreviations....................................xii
Symbols.................................................xiii
Chapter 1 Introduction.....................................1
1.1 History on the running-in..............................1
1.2 The types of running...................................3
1.2.1 Based on the shape of the coefficient of friction....3
1.2.2 Based on the induced system..........................3
1.2.3 Based on the relative motion.........................4
1.3 The objective of this research.........................6
1.4 Effects of prior operating history on running-in[29]...6
1.5 Characterization of frictional running-in behavior[29].7
1.6 The role of wear in friction break-in modeling[29].....8
1.7 Scale effect in running-in[29].........................9
Chapter 2 Literature review and theoretical foundation....14
2.1 Lubrication regimes...................................14
2.2 Factors affect the quality of running-in process......15
2.2.1 Effect of applied loads:............................16
2.2.2 Effect of speeds:...................................16
2.2.3 Effect of regime lubricates.........................16
2.2.4 Effect of time to running-in to each steps:.........17
2.3 The contact characteristics of rough surfaces in line contact during running-in process[44].....................17
2.3.1 Real contact area (At)..............................17
2.3.2 FP and TFPI index...................................18
Chapter 3 Methodology.....................................20
3.1 Test apparatus and operating variables................20
3.2 Parallel tribological test machine operating procedures................................................21
Chapter 4 Results and Discussion..........................30
4.1 Characterization of wear and friction.................30
4.2 Characterization of contact and real contact area.....45
4.3 Characterization of scuffing..........................46
Chapter 5 Conclusion......................................69
References................................................70





List of Tables
Table 1.1 Effect of prior ring uses on the friction and wear-in process...........................................13
Table 1.2 Duration of the initial drop in friction coefficient in Type ‘f’ break-in curves...................13
Table 3.1 Physical properties of the test lubricant.......29
Table 3.2 Mechanical properties of the test specimen......29
Table 4.1 Specific film thickness (λ).....................68



List of Figures
Fig. 1.1 Abbott-Firestone curve[1]........................11
Fig. 1.2 Schematic representation of the wear behavior as a function of time, number of overrollings or sliding distance of a contact under constant operating conditions (Jamari, 2006)[6]..................................................11
Fig. 1.3 The change of the coefficient of friction and a roughness as a function of time, number of overrollings or sliding distance of a contact under constant operating conditions[6].............................................12
Fig. 1.4 Types of break-in curve shapes. Friction force is on the vertical axis and time or number of cycles is the horizontal axis[8]........................................12
Fig 2.1 Stribeck curve[21]................................19
Fig.3.1 Experimental apparatus[44]........................23
Fig. 3.2 LPS 68 Hydraulic oil.............................23
Fig 3.3 Upper Specimen....................................24
Fig 3.4 Lower Specimen....................................24
Fig 3.5 Upper Specimen....................................25
Fig 3.6 Lower Specimen (front view).......................25
Fig 3.7 Lower Specimen (side view)........................25
Fig 3.8 Lower Specimen (top view).........................25
Fig. 3.9 Tribological Testing Machine.....................26
Fig. 3.10 Tribological Testing Machine....................26
Fig. 3.11 Tribological Testing Machine....................27
Fig. 3.12 Tribological Testing Machine....................27
Fig. 3.13 Ultrasonic machine..............................28
Fig. 3.14 Ultrasonic machine..............................28
Fig. 3.15 Speed control motor.............................28
Fig. 3.16 Acquisition Software Labview....................29
Fig. 4.1 LPS 68 oil, speed 160 rpm, rough Ra(0.10~0.15)μm, load (a) 40,(b) 60........................................48
Fig. 4.2 LPS 68 oil, speed 160 rpm, rough Ra(0.25~0.35)μm, load (a) 40,(b) 60........................................49
Fig. 4.3 LPS 68 oil, speed 160 rpm, rough Ra(0.50~0.70)μm, load(a) 40, (b) 60, (c) 80N of temperature of workpiece; Contact resistance; Friction coefficient..................49
Fig. 4.4 LPS 68 oil, speed 160 rpm, load 40N, different roughness.................................................50
Fig. 4.5 LPS 68 oil, speed 160 rpm, load 60N, different roughness.................................................51
Fig. 4.6 LPS 68 oil, speed 160 rpm, load 80N, different roughness.................................................52
Fig. 4.7 LPS 68 oil, speed 320rpm, rough Ra(0.10~0.15)μm, load (a) 40, (b) 60, (c) 80N of Temperature of workpiece; Contact resistance; Friction coefficient .................53
Fig. 4.8 LPS 68 oil, speed 320 rpm, rough Ra(0.25~0.35)μm, load (a) 40, (b) 60, (c) 80N of Temperature of workpiece; Contact resistance; Friction coefficient .................55
Fig. 4.9 LPS 68 oil, speed 320 rpm, rough Ra(0.50~0.70)μm, load (a) 40, (b) 60, (c) 80N of Temperature of workpiece; Contact resistance; Friction coefficient..................56


[1]Abbott EJ, Firestone FA. On specifying surface quality. Mech Eng 1933;55:569.
[2]Summer-Smith, J.D. (1994). An Introductory Guide to Industrial Tribology, Mechanical Engineering Publications Limited, ISBN 0-85298-896-6 London, UK.
[3]Kraghelsky, V.; Dobychun, M.N. & Kombalov, V.S. (1982).Friction and Wear Calculation Methods, Pergamon Press, ISBN 0080254616, Oxford, UK.
[4]Blau, P.J. (1989). Friction and Wear Transitions of Materials: Break-in, Run-in, Wear-in, Noyes Publications, ISBN 0-815-511965, Park Ridge, NJ, USA.
[5]Lin, J.Y. & Cheng, H.S. (1989).An Analytical Model for Dynamic Wear, ASME Journal of Tribology, Vol. 111, Vol. 3, (July 1989), pp. 468 – 474, ISSN 0742-4787.
[6]Jamari, J. (2006). Running-in of Rolling Contacts. PhD Thesis, University of Twente, Zutphen, ISBN: 90-365-2314-1, Enschede, The Netherlands.
[7] Whitehouse, D.J., 1980, “The Effect of Surface Topography on Wear,” in Fundamentals ofTribology, edited by Suh and Saka, The MIT Press, ISBN 978-0262191838, pp. 17-52,Massachusetts, USA.
[8] Blau, P.J. (1981). Interpretations of the Friction and Wear Break-in Behavior of Metal in Sliding Contact, Wear, Vol. 71, (September 1981), pp. 29 – 43, ISSN 0043-1648.
[9] Blau, P.J. (2005). On the Nature of Running-in, Tribology International, Vol. 38, (August2005), pp. 1007 – 1012, ISSN 0043-1648.
[10] Kalker, J.J. (2000). Linear Elasticity in Rolling Contact, In: Rolling Contact Phenomena, B.Jacobson & J.J. Kalker (Ed.), 1-16, Springer-Verlag Wien ISBN 3-211-83332-3, New York, USA.
[11]Tasan, Y.C.; de Rooij, M.B. &Schipper, D.J. (2007). Changes in the Micro-geometry of a Rolling Contact, Tribology International, Vol. 40, (April, 2007), pp. 672–679, ISSN0043-1648.
[12] Jeng, Y.R.; Lin, Z.W. & Shyu, S.H. (2004). Changes of Surface Topography during Running-in Process, ASME Journal of Tribology, Vol. 126, No. 3, pp. 620 – 625, ISSN 0742-4787.
[13] Sugimura, J.; Kimura, Y. & Amino, K. (1987). Analysis of the topography changes due to wear–Geometry of the running-in process, JSLE , Vol. 31, No.11, pp. 813 – 820.
[14] Wang, W.; Wong, P.L. & Zhang, Z. (2000). Experimental Study of the Real Time in Surface Roughness during Running-in for PEHL Contacts, Wear, Vol. 244, (August 2000),pp. 140 – 146, ISSN 0043-1648.
[15] Akbarzadeh, S. & Khonsari, M.M. (2011). Experimental and Theoretical Investigation of Running-in, Tribology International, Vol. 44, (February 2011), pp. 92-100, ISSN 0043-1648.
[16] Duncan Dowson, History of Tribology, Second Edition, Professional Engineering Publishing, 1997, ISBN 1-86058-070-X.
[17] Palaci, Ismael (2007), Atomic Force Microscopy Studies of Nanotribology and Nanomechanics. p. 52.
[18] Armstrong-Helouvry, Brian (1991). Control of machines with friction. USA: Springer. p. 10.ISBN 0-7923-9133-0.
[19] Van Beek, Anton. "History of Science Friction".tribology-abc.com. Retrieved 2011-03-24.
[20] R. Stribeck, Die wesentlichen Eigenschaften der Gleit- und Rollenlager (The basic properties of sliding and rolling bearings), Zeitschrift des Vereins Deutscher Ingenieure, 2002, Nr. 36, Band 46, p. 1341-1348, p. 1432-1438 and 1463-1470.
[21] H. Czichos, K.-H.Habig, Tribologie-Handbuch (Tribology handbook), Vieweg Verlag, Wiesbaden, 2nd edition, 2003, ISBN 3-528-16354-2.
[22] Stribeck, R. (1901), Kugellager fur beliebige Belastungen (Ball Bearings for any Stress), Zeitschrift des Vereins Deutscher Ingenieure 45.
[23] Stribeck, R. (1902), Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings), Zeit. des VDI 46.
[24] Jacobson, Bo (2003), The Stribeck memorial lecture.
[25] Hersey, M. D. (1914), The Laws of Lubrication of Horizontal Journal Bearings, J. Was h. Acad. Sci., 4, 542-552.
[26] Biography of Mayo D. Hersey.
[27] Robert H. Thurston, Friction and lubrication - Determination of the laws and coefficients of friction by new methods and with new apparatus, Trubner and Co., Ludgate Hill, London, 1879.
[28] Robert H. Thurston, A treatise on friction and lost work in machinery and millwork, John Wiley & Sons, New York, 1894, fifth edition.
[29] Blau P.J, On the nature of running-in, Tribology International 38 (2005) 1007–1012.
[30] Summers-Smith JD. A tribology casebook.: Mechanical Engineering Publication Ltd; 1997.
[31] Standard Practice for Conducting Friction Tests of Piston Ring and Cylinder Liner Materials Under Lubricated Conditions, ASTM G181-04, ASTM Annual Book of Standards. vol. 03.02, 2005.
[32] Blau P.J. Friction science and technology. New York: Marcel Dekker;1996 p. 426.
[33] Blau P.J, Martin RL. Friction and wear of carbon-graphite materials against metal and ceramic counter faces. Tribology Int 1994;27(6):413–22.
[34] Shakhvorostov D, Po‥hlmann K, Scherge M. On the measurement of nano-wear events, preprint from the conference Tribology and Lubrication Engineering. Germany: Stuttgart/Osfildern; 2004 [13–15January].
[35] Blau PJ. Four great challenges confronting our understanding and modeling of sliding friction. In: Dowson D, editor. Tribology for energy conservation. UK: Elsevier; 1998. p. 117–28.
[36] Shakhvorostov D, Po‥hlmann K, Scherge M. An energetic approach tofriction, wear and temperature. Wear 2004;257:124–30.
[37] Kragelsky IV, Dobychin MN, Kombalov VS. Friction and wear calculation methods.: Pergamon Press; 1982.
[38] Blau PJ. Effects of surface preparation on the friction and wear behavior of silicon nitride/silicon carbide sliding pairs. J Mater Sci1992;27:4732–40.
[39] Kapoor A, Johnson KL. Plastic ratcheting as a mechanism of metallic wear. Proc R Soc London A 1994;445:367–81.
[40] Kapoor A, Williams JA. Shakedown limits in sliding contacts on a surface-hardened half-space. Wear 1994;172:197–206.
[41] Frontiers of Tribology at the Atomic Scale, Symposium at Oak Ridge National Laboratory, 11–13 March 2004.
[42] NATO Advanced Studies Institute on. Fundamentals of tribology and bridging the gap between the macro- and micro/nano scales. Hungary: Keszthely; 2000.
[43] Blau PJ. In: Bhushan B, editor. Fundamentals of tribology and bridging the gap between the macro- and micro/nano scales. Dordrecht: Kluwer Academic Publishers; 2001. p. 241–60.
[44] J.-H. Horng, Mu-Long Len, Jian-Shing Lee, The contact characteristics of rough surfaces in line contact during running-in process, Wear 253 (2002) 899–913.
[45] W.P. Dong, P.J. Sullivan, K.J. Stout, Comprehensive study of parameters for characterizing three-dimensional surface topography. Part III. Parameters for characterizing amplitude and some functional properties micro contact model for rough surfaces, Wear 178 (1994)29–43.
[46] J.-H. Horng, An elliptic elastic–plastic asperity micro contact model for rough surfaces, ASME Trans., J. Tribol. 120 (1998) 82–89.
[47] J.-H. Horng, True friction power intensity and scuffing in sliding contacts, ASME Trans., J. Tribol. 120 (1998) 829–834.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top