(35.175.212.130) 您好!臺灣時間:2021/05/18 03:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡秉寰
研究生(外文):Bing-Huan Tsai
論文名稱:疊代學習控制技術應用於五軸輪廓循跡控制
論文名稱(外文):Iterative Learning Control Technology for Five-Axis Contouring Control
指導教授:林明宗林明宗引用關係
指導教授(外文):Ming-Tzong Lin
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械設計工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:74
中文關鍵詞:疊代學習控制五軸輪廓循跡輪廓誤差刀具中心點控制
外文關鍵詞:Iterative learning controlFive-axis contouringContour errorTool center point control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出一五軸命令式疊代學習控制技術(Five-axis command-based iterative learning control, FCILC)結合使用刀具中心點控制功能(Tool center point control function, TCPCF),用以大幅提升五軸重複輪廓加工之追蹤以及輪廓循跡性能。在不改變CNC運動控制器架構下,FCILC學習演算法利用前幾次加工程序的追蹤誤差來疊代更新輸入命令。此TCPCF技術可偵測刀具位置以及刀具軸向路徑之尖銳轉角以及不連續處,並依據切線以及軸向急衝度的限制來產生平滑之五軸命令軌跡。FCILC技術則可降低由系統伺服落後以及摩擦力所造成之追蹤及輪廓誤差,並消除外部雜訊的累積效應。最後,將此FCILC結合一零相位濾波器應用於一搭載PC-based控制器之擺頭搖籃型五軸雕刻機上,實驗結果顯示採用FCILC技術五軸刀具中心點之輪廓循跡精度可以被大幅地提升。

In this paper, a five-axis command-based iterative learning control (FCILC) with tool center point control function (TCPCF) is proposed to improve the tracking and contouring performance for five-axis repetitive contour machining. Without changing the original CNC control architecture, the proposed FCILC utilizes the learning algorithm to updates the input commands based on the tracking errors from the previous process. The TCPCF can detect the sharp corner and discontinuity of the tool position and orientation, and generate smooth five-axis motion trajectories based on the constraints of tangential and axial jerk. The FCILC can reduce the tracking and contouring errors caused by servo lag and friction, and alleviate the effects of noise accumulation. Finally, FCILC with a zero-phase filter is applied to a C-type five-axis engraving machine using a PC-based controller. Experiment results validate that the contour errors of the TCP can be significantly reduced using the proposed technology.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻回顧 2
1.4 論文架構 3
第二章 桌上型五軸雕刻機 4
2.1 順逆向運動學 4
2.2 路徑規劃 6
2.1 運動控制器設計 9
第三章 疊代學習控制 11
3.1 疊代學習控制器架構 11
3.1.1 零相位移濾波器設計 12
3.1.2 疊代學習控制演算法 13
3.2 疊代學習控制模擬 15
3.2.1 雙軸輪廓誤差模型 15
3.2.2 五軸雕刻機之刀具尖點輪廓誤差估測 21
3.2.2.1 快速輪廓誤差估測 21
3.2.2.2 刀具中心點輪廓誤差估測 22
第四章 疊代學習實驗 25
4.1 疊代學習實驗架構 25
4.2 不具TCP功能插補路徑實驗 26
4.2.1 三角形路徑 26
4.2.2 圓形路徑 28
4.2.3 花瓣路徑 30
4.3 具TCP功能插補路徑實驗 32
4.3.1 三角形路徑 32
4.3.2 圓形路徑 34
4.3.3 花瓣路徑 36
4.4 實驗結果 38
第五章 結論與未來方向 47
參考文獻 48
附錄一 不具TCP功能之相關實驗數據圖 51
附錄二 具TCP功能之相關實驗數據圖 61
Extended Abstract 71
簡歷 74

[1]L. Andolfatto, S. Lavernhe and J. R. R. Mayer,“Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool,” International Journal of Machine Tools and Manufacture, vol. 51, no. 10-11, pp. 787-796, 2011.
[2]M.-T. Lin, M.-S. Tsai and H.-T. Yau, “Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm,” International Journal of Machine Tools and Manufacture, vol. 47, no. 15, pp. 2246-2262, 2007.
[3]Z. Qiao, T. Wang, Y. Wang, M. Hu and Q. Liu, “Bezier polygons for the linearization of dual NURBS curve in five-axis sculptured surface machining,” International Journal of Machine Tools and Manufacture, vol. 53, no. 1, pp. 107-117, 2012.
[4]A.-C. Lee, M.-T. Lin, Y.-R. Pan and W.-Y. Lin, “The feedrate scheduling of NURBS interpolator for CNC machine tools,” Computer-Aided Design, vol. 43, no. 6, pp. 612-628, 2011.
[5]X. Beudaert, S. Lavernhe and C. Tournier, “Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path,” International Journal of Machine Tools and Manufacture, vol. 57, pp. 73-82, 2012.
[6]A. Yuen, K. Zhang and Y. Altintas, “Smooth trajectory generation for five-axis machine tools,” International Journal of Machine Tools and Manufacture, vol. 71, pp. 11-19, 2013.
[7]Y. Koren and C.-C. Lo, “Variable-gain cross- coupling controller for contouring,” Annals of the CIRP, vol. 40, no.1, pp. 371-374, 1991.
[8]A. El Khalick M., Naoki Uchiyama and Shigenori Sano, “Sliding mode contouring control design using nonlinear sliding surface for three-dimensional machining,” International Journal of Machine Tools and Manufacture, vol. 65, pp. 8-14, 2013.
[9]F. Huo and A.-N. Poo, “Improving contouring accuracy by using generalized cross-coupled control,” International Journal of Machine Tools and Manufacture, vol. 63, pp. 49-57, 2012.
[10]M.-T. Lin and S.-K. Wu, “Modeling and analysis of servo dynamics errors on measuring paths of five-axis machine tools,” International Journal of Machine Tools and Manufacture, vol. 66, pp. 1-14, 2013.
[11]M.-T. Lin and S.-K. Wu, “Modeling and improvement of dynamic contour errors for five-axis machine tools under synchronous measuring paths,” International Journal of Machine Tools and Manufacture, vol. 72, pp. 58-72, 2013.
[12]B. Sencer, Y. Altintas and E. Croft, “Modeling and control of contouring errors for five-axis machine tools-Part I: Modeling,” ASME Journal of Manufacturing Science and Engineering, vol. 131, no. 3, pp. 1-8, 2009.
[13]A. E. Khalick M. and N. Uchiyama, “Estimation of tool orientation contour errors for five-axis machining,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 5, pp. 271-277, 2013.
[14]D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96-114, 2006.
[15]M.-T. Lin, B.-H. Tsai, C.-Y. Lee, S.-K. Wu and H.-M. Lee, "Command-based iterative learning control with TCP function for five-axis contouring," in the 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, Aug. 4-7, 2013.
[16]K. Maeda, N. Sonoda and Y. Toyozawa, Apparatus for synchronously controlling a plurality of servomotors, European Publication Patent No. 1967924 A1, 2008.
[17]趙若嵐,剛性攻牙學習控制與實驗驗證,國立中正大學機械工程研究所,碩士論文,2010。
[18]D. D. Roover and O. H. Bosgra, “Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system,” International Journal of Control, vol. 73, no. 10, pp. 968-979, 2000.
[19]K. L. Barton and A. G. Alleyne, “A cross-coupled iterative learning control design for precision motion control,” IEEE Transaction on Control Systems Technology, vol. 16, no. 6, pp. 1218-1231, 2008.
[20]M.-S. Tsai, M.-T. Lin and H.-T. Yau, “Development of command-based iterative learning control algorithm with consideration of friction, disturbance, and noise effects,” IEEE Transactions on Control Systems Technology, vol. 14, no. 3, pp. 511-518, 2006.
[21]M.-S. Tsai, C.-L. Yen and H.-T. Yau, “Development of a hybrid iterative learning control for contouring NURBS curves,” Asian Journal of Control, vol. 13, no.1, pp. 107-125, 2011.
[22]M.-T. Lin, C.-L. Yen, M.-S. Tsai and H.-T. Yau, “Application of robust iterative learning algorithm in motion control system,” Mechatronics, vol. 23, no. 5, pp. 530-540, 2013.
[23]H. Elci, R. W. Longman, M. Q. Phan, J.-N. Juang, and R. Ugoletti, “Simple learning control made practical by zero-phase filtering: Applications to robotics,” IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications, vol. 49, no. 6, pp. 753-767, 2002.
[24]F. Gustafsson, “Determining the initial states in forward-backward filtering,” IEEE Transitions on Signal Processing, vol. 44, pp. 988-992, 1996.
[25]S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 3rd ed., McGraw-Hill, 2007.
[26]MathWorks Inc., Signal Processing Toolbox™ User’s Guide, MATLAB R2012b, 2012.
[27]Do Carmo, M. P., 1976, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top