(35.175.212.130) 您好!臺灣時間:2021/05/18 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇雋夫
研究生(外文):Chun-Fu Su
論文名稱:氧化鋅之類石墨烯週期結構頻溝效應分析
論文名稱(外文):Band Gaps of Periodic Graphene-like Structure of ZnO
指導教授:黃自貴
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械設計工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:94
中文關鍵詞:石墨烯聲子晶體FBARBloch’s壓電材料有限元素法
外文關鍵詞:GraphenePhononic crystalsfilm bulk acoustic resonatorBloch’sfinite element modeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來人們對於週期性複合材料或是結構中傳遞經典波進行研究,這些材料或是結構中,僅存在某些經典波波傳的頻率範圍,這些稱為帶隙。在其帶隙範圍內的波傳被抑制無法作傳播,此探討彈性波帶隙現象的類結構稱為聲子晶體。
本研究以單層石墨烯結構為題材,在X-Y平面沿Z軸延伸柱體式類石墨烯週期結構的聲子晶體,即以壓電材料ZnO所組而成,利用有限元素軟體進行二維與三維波傳行為與帶隙現象分析探討。二維方面以平面應變XY模式下針對探討在改變鏈結圓直徑與鏈結桿寬度及正多邊形邊數數量,觀察其頻溝現象及模態變形。結果顯示在鏈結圓直徑為0.7 mm、鏈結桿寬度在0.1 mm時頻溝效應較佳。
在三維方面以薄膜體聲波共振器(FBAR)為主要概念,在ZnO壓電層給於上下電極(Au),透過上下金屬電極層激發塊體波。本文利用有限元素法(FEM)探討壓電層厚度為10 ?m的類石墨烯超晶格5N×3M週期結構(N:X方向週期;M:Y方向週期),在引入單缺陷、雙缺陷及線缺陷結構受到電場極化後,觀察其缺陷模態變化及高頻超平帶特性。分析結果得知類石墨烯超晶格5N×3M週期結構依本文規劃之三種缺陷形式的不同,則高頻超平帶會以偶數次數增加,由此可知缺陷位置及形式不同會影響缺陷模態的頻率。
另外,又進一步探討含有質量負載Au的金屬電極層效應下,發現類石墨烯結構隨著金屬厚度尺度逐漸縮小,則帶隙範圍之帶邊頻率呈現線性走向變化,藉此可反推算更微小的金屬厚度尺度所對應之帶隙範圍。


This study constructs a phononic crystal acoustic wave device that adopts a graphene-like structure and is composed of piezoelectric zinc oxide (ZnO) material. We employed the finiteelement method to determine periodic boundary conditions. Following Bloch’s theorem, we analyzed the acoustic wave propagation of the proposed graphene-like structure in the 2D and 3D frequency domain to understand the band gap effect and oscillation behavior. We also investigated the band gap variation of changing chain structure diameters, bonding rod widths between the atoms columns and the change in the number of edges to develop better surface acoustic wave device.

Three-dimensional aspects of a film bulk acoustic resonator (FBAR) as the main concept of the ZnO piezoelectric layer to the upper and lower electrodes (Au). Explore the piezoelectric layer thickness for 10 ?m supercell 5N × 3M periodic graphene-like structure (N: X direction of the cycle; M: Y direction cycle), the introduction of a single defect, dual defects and line defect structure is subjected to electric pole technology, the high frequency defects ultra flat-belt will even increase in the number, can be seen in different forms defect location and defect will affect the modal frequencies.

On the other hand, further discussion contains a metal electrode layer mass loading effect (Au), discovered graphene-like structures with the metal thickness scales gradually reduced, the band gap of the band edge frequency range linearly toward change, projected to be more tiny metal thickness scales corresponding to the band gap range.


中文摘要...i
英文摘要...iii
誌謝...vi
表目錄...viii
圖目錄...ix
符號說明...ix
第一章 緒論...1
1.1 研究動機...1
1.2 文獻回顧...2
1.3 內容簡介...4
第二章 聲子晶體晶格能帶理論...5
2.1 平移週期性...6
2.2 倒晶格向量...7
2.3 布拉格定理(Bragg law)...8
2.4 Bloch定理...9
第三章 二維類石墨烯結構頻溝效應分析...13
3.1 二維類石墨烯概觀...13
3.2 二維類石墨烯結構邊界設定...14
3.3 有限元素模型網格規劃...16
3.4 鏈結圓直徑參數變化影響...17
3.4.1鏈結圓直徑參數規劃...18
3.4.2 分析結果探討...18
3.5 鏈結桿寬度參數變化...32
3.5.1 分析結果探討(鏈結桿寬度)...32
3.6 正多邊形參數分析...38
3.6.1 分析結果探討(正多邊形)...38
3.6.2 振動模態形變探討(正多邊形)...40
3.7 二維類石墨烯結構結論...52
第四章 三維週期性類石墨烯結構頻溝效應...54
4.1 三維類石墨烯結構概觀(初基單胞)...54
4.2 初基單胞分析結果...55
4.3 超晶格類石墨烯結構...58
4.3.1 超晶格結構理論...58
4.4 超晶格缺陷形式結構頻散關係與頻率響應分析...60
4.4.1 超晶格缺陷結構概觀及邊界設定...60
4.4.2 分析結果探討(單缺陷)...63
4.4.3 頻率響應與激振模態探討(單缺陷)...64
4.5 超晶格雙缺陷結構頻散關係與頻率響應分析...68
4.5.1分析結果探討(雙缺陷)...68
4.5.2 激振模態探討(雙缺陷)...69
4.6 超晶格線缺陷結構頻散曲線與頻率響應分析...71
4.7 各缺陷結構的超平帶比較探討...74
4.8 含質量負載金屬電極層效應影響...75
4.9金屬電極層厚度尺度參數影響...78
4.10三維類石墨烯週期結構結論...81
第五章 結論及未來展望...83
5.1 結論...83
5.2 未來展望...84
參考文獻...85
英文論文大綱...90
簡歷...94


[1]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., 2004, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, pp. 666-669.
[2]Novoselov, K.S., Geim, A.K., Morozov, S.V., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., 2005, “Two Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature 438, pp. 197-200.
[3]Kohlschutter, V., and Haenni, P., 1918, “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsaure,” Z. Anorg. Allg. Chem., 105(1), pp. 121–144.
[4]Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., 2008, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), pp. 1308.
[5]Ruess, G., and Vogt, F., 1948, “Hochstlamellarer Kohlenstoff aus Graphitoxyhydroxyd,” Monatshefte fur Chemie 78(3-4), pp. 222–242.
[6]Geim, A.K., and Novoselov, K.S., 2007, “The rise of graphene,” Nature Materials 6(3), pp. 183–191.
[7]Savage, N., 2009, “Researchers Unzip Carbon Nanotubes to Make Ribbons of Graphene: A new route to the narrow graphene ribbons needed in electronics,” en:IEEESpectrum.
[8]Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., and Iijima, S., 2010, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanot. 5, pp. 574–578.
[9]Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.H., and De Heer, W.A., 2004, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,” The Journal of Physical Chemistry B 108(52), pp. 19912-6.
[10]Han., M. Y., Ozyilmaz, B., Zhang, Y., and Kim, P., 2007, “Energy Band-Gap Engineering of Graphene Nanoribbons,” Phys. Rev. Lett. 98, p. 206805.
[11]Brillouin, L., 1953, Wave Propagation in Periodic Structures, 2nd edition, Dover Publications, New York.
[12]Cremer, L., Hekl, M., and Petersson , B.A.T., 2005, Structure-Borne Sound, 3rd edition, Springer, Berlin.
[13]Mead, D.J., 1986, “A new method of analyzing wave propagation in periodic structures; Applications to periodic timoshenko beams and stiffened plates,” J. Sound. Vib. 104(1), pp. 9-27.
[14]Richards, D., Pines, D.J., 2003, “Passive reduction of gear mesh vibration using a periodic drive shaft,” J. Sound. Vib. 264, pp. 317-342.
[15]Diaz-de-Anda, A., Pimentel, A., Flores, J., Morales, A., Gutierrez, L., and Mendez-sanchez, R.A., 2005, “Locally periodic Timoshenko rod: Experiment and theory,” J. Acoust. Soc. Am. 117(5), pp. 2814-2819.
[16]Bondaryk, J.E., 1997, “Vibration of truss structures,” J. Acoust. Soc. Am. 102(4), pp. 2167-2175.
[17]Sigalas, M., and Ecconomou, E.N., 1992, “Elastic and acoustic wave band structure,” J. Sound Vib. 158, pp. 377.
[18]Sigalas, M., and Economou, E.N., 1993, “Band structure of elastic waves in two dimensional systems,” Solid State Commu. 86, pp. 141.
[19]Kushwaha, M.S., Halevi, P., Dobrzynski, L., and Diafari-Rouhani, B., 1993, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, pp. 2202.
[20]James, R., Woodley, S.M., Dyer, C.M., and Humphrey, V.F., 1995, “Sonic bands, bandgaps, and defect states in layered structures--Theory and experiment,” J. Acoust. Soc. Am. 97(4), pp.2041-2047.
[21]Munday, J.N., Bennett, C.B., and Robertson, W.M., 2002, “Band gaps and defect modes in periodically structured waveguides,” J. Acoust. Soc. Am. 112(4), pp. 1353-1358.
[22]Robertson, W.M., Baker, C., and Bennett, C.C., 2004, “Slow group velocity propagation of sound via defect coupling in a one-dimensional acoustic band gap array,” Am. J. Phys. 72(2), pp.255-257.
[23]Psarobas, I.E., Stefanou, N., and Modinos, A., 2000, “Phononic crystals with planar defects,” Phys. Rev. B 62(9), pp. 5536-5540.
[24]Chandra, H., Deymier, P.A., and Vasseur, J.O., 2004, “Elastic wave propagation along waveguides in three-dimensional phononic crystals,” Phys. Rev. B 70(5), pp.054302.
[25]Torres, M., Montero de Espinosa, F. R., Garcia-Pablos, D., and Garcia, N., 1999, “Sonic Band Gaps in Finite Elastic Media: Surface States and Localization Phenomena in Linear and Point Defects,” Phys. Rev. Lett. 82(15), pp.3054-3057.
[26]Krishnaswamy, S.V., Rosenbaum, J., Horwitz, S., Vale, C., and Moore, R.A., 1990, “Film bulk acoustic wave resonator technology,” IEEE Ultrason. Symp. 1, pp. 529-536.
[27]Qiu, X., Zhu, J., Oiler, J., Yu, C., Wang, Z. and Yu, H., 2010, “Film Bulk Acoustic-wave Resonator (FBAR) based humidity sensor,” 5th IEEE International Coference on NEMS, pp. 445-449.
[28]Qin, L., Chen, Q., Cheng, H., and Wang, Q.M., 2010, “Mass sensitivity of thin film bulk acoustic wave resonator based on c-axis tilted ZnO film,” IEEE Ultrason. Symp. pp. 1267-1271.
[29]Hemert, T., Reimann, K., and Hueting, R.J.E., 2012, “Extraction of second order piezoelectric parameters in bulk acoustic wave resonators,” Appl. Phys. Lett. 100, pp. 232901.
[30]Artieda, A., and Muralt, P., 2011, “3.4 GHz composite thin film bulk acoustic wave resonator for miniaturized atomic clocks,” Appl. Phys. Lett. 98, pp. 262902.
[31]Huang, Z.G., and Chen, Z.Y., 2011, “Acoustic Waves in Two-dimensional Phononic Crystals with Reticular Geometric Structures,” J. Vib. Acoust. 133(3), pp. 031011.
[32]Huang, Z.G., 2011, “Silicon-based filters, resonators and acoustic channels with phononic crystal structures,” J. Phys. D: Appl. Phys. 44, pp. 245406.
[33]Wu, T.-T., Huang, Z.G., Tsai, T.C., and Wu, T.C., 2008, “Evidence of complete band gap and resonances in a plate with periodic stubbed surface,” Appl. Phys. Lett. 93, pp. 111902.
[34]溫熙森,2006,光子/聲子晶體理論與技術,科學出版社,北京。
[35]溫熙森、溫激鴻、郁殿龍、王剛、劉耀宗、韓小雲,2009,聲子晶體,國防工業出版社,北京。
[36]Huang, Z.G.,2005, “Analysis of Wave Properties in Photonic Crystal Using the Plane-wave Expansion and Supercell Techniques,” 國立台灣大學應用力學研究所博士論文。
[37]Rosenbaum,1998, Bulk Acoustic Wave Theory and Devices, Artech House Inc, London England, pp 3-452.
[38]Tanaka, Y., Tomoyasu, Y., and Tamura, S. I., 2000, “Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch,” Phys. Rev. B, 62(11), pp. 7387–7392.
[39]Lynn Yarris, 2007, “Falling into the Gap-Berkeley Lab Researchers Take a Critical First Step Toward Graphene Transistors,” science@berkeley lab, November
[40]Ruby, R.C., Bradley, P., Oshmyansky, Y., 2001, “Thin film bulk acoustic resonators for wireless applications,” IEEE Ultrason. Symp, pp.813-821
[41]黃崑原著,韓汝琦改編,1988,固體物理學,高等教育出版社,北京。
[42]Myers, H.P., 1988, Introductory solid state physics, Philadelphia : Taylor & Francis, London.
[43]Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., 1992, “Iterative minimization techniques for ab initio total-energy calculations : molecular dynamics and conjugate gradients,” Rev. Mod. Phys. 64, pp. 1045.
[44]Chen, Z.Y., 2011, “The Design and Analysis on Miniature Quartz Resonators Using the 2-D FEM Model,” 國立虎尾科技大學機械設計工程系研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊