(3.238.96.184) 您好!臺灣時間:2021/05/10 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林家民
研究生(外文):Cha-Min Lin
論文名稱:大客車車體結構碰撞分析與耐撞性之研究
論文名稱(外文):Collision Analysis and Crashworthiness Study for Bus Body Structure
指導教授:林盛勇
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:90
中文關鍵詞:大客車碰撞殘留空間耐撞性能量吸收
外文關鍵詞:BusesCrashResidual spaceCrashworthinessEnergy absorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:416
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來大客車事故頻傳,不只是翻覆意外,碰撞事故也不少。對於大客車車體結構安全強度國內尚無完整的相關法規規定,而國內多數製造廠商因成本考量簡化了大量的補強結構,因此結構強度的不足成為發生事故的原因之一。
本文首先針對一般大客車骨架結構形式進行耐撞性分析,對業界常用的六種骨架進行有限元分析比較其優缺點,同時研究模型中網格尺寸、厚度積分點、沙漏能控制及局部網格細化等收斂性分析,為後續整車骨架有限元模型的建立提供參考。接著,引用已滿足翻覆安全強度之大客車車體結構設計並重新繪製,利用有限元素法進行碰撞模擬分析,其中包括正面碰撞,側面碰撞及後部碰撞,碰撞場景配置則參考法規FMVSS 208、214、301。從初步的模擬分析,瞭解大客車整體骨架的變形過程及主要緩衝吸能構件的的變形情況,發現大客車車體結構強度耐撞性能不足,導致乘客殘留空間被侵犯,表示原始大客車車體結構強度需要改善並決定需要進行補強的部位。補強方式以不同幾何骨架結構形式、改變骨架排列位置及增加補強結構件等方式分別對保險桿、車頂及底層結構重新進行強度設計與分析,找出較為合適的結構設計形式,去改善其能量的吸收能力,以提升耐撞性能。
綜合以上種種設計型式與補強之考量,將大客車做適當的結構改良設計,反覆進行碰撞分析,保險桿部分以耦合型式可獲得最小加速度峰值16.4g,DIY型式設計可獲得較好能量吸收,兩者皆有最小位移約1500mm;車頂經改良後,可將衝擊帶往車身中段,避免變形集中於車頭,且變形不影響乘客殘留空間;底層結構以斜撐方式進行補強,增加側牆整體強度,減少乘客殘留空間的侵犯,車體傾斜及骨架變形皆獲得改善,因此研判本文改善方式可供業者做為大客車車體結構安全強度設計之參考依據。


Bus accidents have been frequent in recent years, including rollovers and crashes. Regulations on the strength of the bus body structure, however, are inadequate and incomplete. Most of the domestic bus body manufacturers have simplified the reinforcement of the bus body structure for the sake of lower costs, meanwhile the insufficient structural strength is exactly one of the major causes of bus accidents.
In this research, the crashworthiness analysis of the bus skeleton structure was given in the first place, where six most commonly seen bus skeletons were taken for finite element analysis to observe their good and bad. Meanwhile, for subsequent establishment of a finite element model of a whole bus skeleton, also conducted were convergence analyses of middle-sized meshes, thickness integration points, hourglass control, and local mesh refinement. And then, a body structure conformable to the rollover safety strength was taken as the basis for re-drawing the skeleton, for which a finite element method was used to analyze the simulated crashes, including frontal crash, side crash, and rear crash, and the crash scenario was built in accordance with the legal act FMVSS 208, 214 and 301. In the initial simulation analysis, the deformation of the entire bus body skeleton and the energy-absorbing cushioning components were observed, which revealed an inadequate crashworthiness strength of the bus body structure, that could lead to invasion of passengers'' residual space. The result suggests that the strength of the bus body structure needs to be improved and the spots in need of reinforcement should be identified. The reinforcement can be done by adding geometric skeletons, changing the skeleton''s aligning arrangement, adding reinforcement structural components to make the bumper, roof and bottom structure stronger in a better and tougher body structure, so that the body can be more capable of absorbing the impact from crashes to increase crashworthiness.
With all the design patterns and reinforcement considerations mentioned above, the bus body structure can be improved through repetitive crash tests and analyses for a better design, and if the bumper is made a coupling pattern, it will be able to acquire the minimum acceleration peak value of 16.4g, plus the DIY design pattern that can produce a better energy absorption capacity, making a minimum displacement of approximately 1500mm. Improved design of the car roof can distribute the crash impact to the middle part of the car body to avoid too much concentration of deformation on the car head, thus the passengers'' residual space won''t be much affected. The bottom structure can be reinforced with diagonal brace to increase the overall strength of the sides and reduce the invasion of passengers'' residual space, so that the car boy tilting and skeleton deformation from crashes can be alleviated. Hopefully, the results of this study can provide helpful information to the car body designers and manufacturers for them to make better and safer buses.


摘要.......................................................i
Abstract................................................iii
誌謝.......................................................v
目錄......................................................vi
表目錄...................................................viii
圖目錄.....................................................ix
第一章 前言.................................................1
1.1研究背景.................................................1
1.2研究動機與目的............................................3
1.3文獻探討.................................................5
第二章 基礎理論.............................................10
2.1碰撞(Collision)........................................10
2.1.1衝量與線性動量(Liner impulse and momentum).............10
2.1.2動量守恆(Momentum conservation)與碰撞(Collision).......11
2.1.3完全彈性碰撞...........................................11
2.1.4完全非彈性碰撞.........................................12
2.1.5二維碰撞..............................................13
2.1.6質量中心..............................................14
2.2多物體接觸碰撞系統........................................14
2.3結構力學與動力學理論......................................15
2.3.1功與虛功..............................................15
2.3.2 Hamilton原理........................................16
2.3.3 Lagrange運動方程式...................................16
2.4彈塑性材料簡化力學模型.....................................18
2.5 LS-DYNA接觸界面模擬.....................................21
2.5.1基礎概念..............................................21
2.5.2接觸類型..............................................23
2.5.3接觸剛度的計算.........................................26
2.5.4接觸控制參數...........................................27
2.5.5接觸輸出..............................................29
2.6沙漏能量................................................30
第三章 碰撞法規概述..........................................32
3.1碰撞試驗種類.............................................32
3.1.1正面碰撞..............................................32
3.1.2側面碰撞..............................................35
3.1.3後部碰撞..............................................37
3.2碰撞試驗之主要應用........................................38
第四章 大客車車體結構設計.....................................39
4.1.1分析方案與有限元模型建立.................................40
4.1.2碰撞變形分析...........................................42
4.1.3碰撞加速度分析.........................................43
4.1.4結構耐撞性提高改進方法...................................45
4.2 骨架結構有限元素模型收斂性分析.............................46
4.3本章小結................................................50
第五章 大客車車體結構碰撞分析..................................51
5.1初始大客車車體結構碰撞分析.................................51
5.1.2正面碰撞..............................................53
5.1.3側面碰撞..............................................58
5.1.4後部碰撞..............................................62
5.2保險桿補強分析...........................................67
5.3車頂補強分析.............................................72
5.4車身底層骨架補強分析......................................75
5.5本章小結................................................79
第六章 結論................................................81
參考文獻...................................................82
Extended Abstract.........................................85
簡歷......................................................90

[1]http://www.thb.gov.tw/TM/Default.aspx,交通部公路總局。
[2]http://www.nhtsa.gov/,美國道路交通安全局。
[3]E.J. Honiball, J.L. Niekerk, “The Development of A Test Specification to Determine the Rollover Protection of Passengers in Light Commercial Vehicles Fitted with Canopies”, Accident Analysis and Prevention, Vol.33 (2001), pp.621-628.
[4]T.S. Lim, D.G. Lee, 2002, “Mechanically Fastened Composite Side-Door Impact Beams for Passenger Cars Designed for Shear-Out Failure Modes”, Composite Structures 56, pp.211–221.
[5]吳建勳,2005,“提升車輛前碰撞乘員安全性評估方法與應用”,中華民國第二十九屆全國力學會議。
[6]藍宏文,“台車與實車衝擊試驗之人體損傷分析”,車輛工程學刊,Vol.4 (2007), pp.55-65.
[7]李博聞,“有限元分析方法在汽車碰撞研究中的應用”,天津汽車(Tianjin Auto), Vol.3 (2008), pp.40-42.
[8]朱平、肖國鋒、張宇、施欲亮,2008,“轎車追尾碰撞仿真及結構耐撞性改進研究”,中國機械工程,第19卷第6期,文章編號:1004-132X(2008)06-0744-04
[9]白中浩、馬偉杰、曹立波、張前斌,2010,“乘用車-貨車追尾碰撞事故分析及其試驗與仿真研究”,中國機械工程,第21卷第14期,文章編號:1004-132X(2010)14-1742-06
[10]K. M. Poland, J. Bishop, M.M. Beckjord, 2003, “Simulation of A Fifteen Passenger Van Rollover and Occupant Kinematics”, 20053ASME International Mechanical Engineering Congress and Exposition, IMECE2003-43150,
[11]S. E. Meyer, B. Herbst, S. Forrest, “Design and Evaluation of A System for Testing and Analysis of Rollovers with Narrow Objects”, 2003 ASME International Mechanical Engineering Congress and Exposition, IMECE2003-43104.
[12]R. Eger, U. Kiencke, 2003, “Modeling of rollover sequences”, Control Engineering Practice, Vol.11, pp.209-216.
[13]B. Herbst, D. Hock, S. E. Meyer, S. Forrest, A. Sances, S. Kumaresan, 2004, “Epoxy Reinforcing for Rollover Safety”, 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE2004-60203.
[14]J. L. Evans, S. A. Batzer, S. B. Andrews, R. M. Hooker, 2005, “Evaluation of Heavy Truck Rollover Crashworthiness”,2005 ASME International Mechanical Engineering Congress and Exposition, IMECE2005-81300.
[15]Y. Hu, C. E. Neal-Sturgess, A. M. Hassan, “Simulation of Vehicle Kinematics in Rollover Tests with Quaternions”, Vol.220 (2006), pp.1053-1513.
[16]L. Castejon, D. Valladares, R. Miralbes, M. Carrera, J. Cuartero, C. Martin, 2007, “New Concept of Rollover Resistant Semitrailer for Hydrogen Transport”, International Design Engineering Technical Conferences & Computers and Information in Engineering Conference ,DETC2007-35515
[17]J. Hu, C. Ma, K. H. Yang, C. C. Chou, A. I. King, R. W. McCoy, R. J. Chen, 2007, “Development of A Finite Element Model for Simulation of Rollover Crashes”, 2007 ASME International Mechanical Engineering Congress and Exposition, IMECE2007-44083.
[18]K. Friedman, J. Hutchinson, 2008, “Review of Existing Repeatable Vehicle Rollover Dynamic Physical Testing Methods”, 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE2008-68751.
[19]王志強、洪嘉振、楊輝,1999,“碰撞檢測問題研究綜述”,軟件學報,第10卷第5期,頁550~556。
[20]宋永立,2001,“TJR 6120D 06 大客車的三段式車架設計”,客車技術與研究,第23卷第1期,頁44~45。
[21]梁卓中、粘鴻祺、蔡易修,2004,“美規 FMVSS 220校車車頂擠壓試驗之數值模擬”,中國機械工程學會第二十一屆全國學術研討會論文集。
[22]VINCZE-PAP Sandor, CSISZAR Andras, 2005, “Real and Simulated Crashworthiness Tests on Buses”, ESV 19th Conference, NHTSA, Paper Number 05-023.
[23]陳燕,2005,“大客車車身結構的力學分析”,客車技術與研究,第四期,文章編號:1006-3331(2005)04-0006-04。
[24]L. Kwasniewski, H. Li, R. Nimbalkar, J. Wekezer, 2005, “Crashworthiness Assessment of A Paratransit Bus”, International Journal of Impact Engineering 32 , pp.883–888.
[25]鄧作梁、吳建勳、王尚文,2006,“實車側面撞擊事故之人體損傷分析”,科學與工程技術學刊,第二卷第一期,頁33~41。
[26]張毅,2006,“客車整體骨架碰撞計算機仿真與耐撞性研究”,武漢理工大學,碩士。
[27]胡惠文、呂鎮源、高懷恩、楊忠霖,2007,“大客車BH-117K整車結構之實驗模態分析”,中國機械工程學會第二十四屆全國學術研討會論文集,頁2416~2421。
[28]G. Olivares, V. Yadav, 2007, “Mass Transit Bus-Vehicle Compatibility Evaluations During Frontal and Rear Collisions”, International Technical Conference on the Enhanced Safety of Vehicles, ESV19, pp.07-0487.
[29]王守江,2007,“客車整體骨架側碰仿真與耐撞性研究”,武漢理工大學,碩士。
[30]王守江、馬力、姚曉璐、朱晶昌,2008,“大客車車身骨架側面碰撞模擬分析”,拖拉機與農用運輸車,第35卷第5期,文章編號:1006-0006(2008)05-0064-02。
[31]Gerardo Olivares, Vikas Yadav, 2009, “INJURY MECHANISMS TO MASS TRANSIT BUS PASSENGERS DURING FRONTAL, SIDE AND REAR IMPACT CRASH SCENARIOS”, International Technical Conference on the Enhanced Safety of Vehicles , ESV21, pp. 09-0427.
[32]張建、范体強、何漢橋,2009,“客車正面碰撞安全性仿真分析”,客車技術與研究,第3期,文章編號:1006-3331(2009)03-0007-03。
[33]陳光、崔玲、高雲凱,2009,“大客車車身結構多工況綜合優化分析”,山東大學學報(工學版),第39卷第6期,頁88~92。
[34]申福林、鄧景濤、謝旭良、孫治華,2010,“大客車正面碰撞的仿真及改進研究”,中國公路學報,第23卷第5期,頁113~118。
[35]郭敬文、姚成,2010,“客車側面碰撞仿真研究”,海峽科學,第12期,頁116~117。
[36]鄧作樑、張福安、彭正平、吳建勳,2003,“側面碰撞人偶數值模型之建立”,Journal of Medical and Biological Engineering, 頁19~28。
[37]吳建昌,2003,“車禍肇事中人體受正面撞擊之損傷分析”,大葉大學機械工程學系碩士班畢業論文。
[38]鄧作樑、莊建隆、王尚文,2007,“EuroSID側撞人偶數值模型之建立”,Journal of Science and Engineering Technology, Vol.3 (2007), pp.1-11.
[39]吳祥竹,2010,“大客車車體結構翻覆強度設計”虎尾科技大學創意工程與精密科技研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔