(35.175.212.130) 您好!臺灣時間:2021/05/15 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭宇順
研究生(外文):Yu-Shun Zheng
論文名稱:螺栓頭部模內加熱成形研究與探討
論文名稱(外文):The Research and Development of Heating Raw Material Within Forming Die for Screw Head.
指導教授:鄭芳松
指導教授(外文):Fang-Sung Cheng
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:電阻式加熱模內快速加熱螺栓頭部成形漸進式加熱成形
外文關鍵詞:Resistive heatingrapid heating of the moldthe bolt head formingthermoforming progressive
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前台灣螺絲螺帽產業為了提升國際的競爭力,如何開發出高單價及獲利率高的特殊合金扣件製品,實為國內金屬成形業者的首要目標。面對強度較高之特殊金屬鍛壓所需成形負荷需求提升,目前相關加熱鍛壓成形方面有以下幾種:(1)加溫爐內胚料加熱後鍛造;(2)電磁線圈感應加熱及(3)電熱棒加熱模具。但因加熱過程後才鍛造成形,導致部份會降低溫度而改變了材料應力大小。模內電阻式直接加熱胚料鍛造製程,除了可降低材料溫度不均、表面氧化及表面材料晶粒粗化外,更可減少鍛造製程中因材料溫度降低而造成的應力大幅提升的因素,增加鎳基超合金材料的可鍛性及量產性。同時,鍛件材料是決定鍛造製程及模擬參數設定的關鍵因素。
有鑑於此,在本研究中提出一種模內電阻式直接加熱胚的鍛造方式,研究要點共分為以下四部份;(1)螺栓頭部鍛造製程模擬分析(2) 模內電阻式直接加熱胚料實驗(3)模內電阻式加熱螺栓頭部成形試驗(4)鎳基合金模內電阻式加熱螺栓頭部成形實驗;利用DEFORM-3D與DEFORM-2D進行螺栓頭部成形與加熱趨勢模擬分析,在依據模擬結果實際製做模具,測試模內電阻式加熱實驗,進而進行模內電阻式加熱螺栓頭部成形實驗,最終在以鎳基合金為材料進行模內電阻式加熱成形實驗與探討。
經由實驗結果可知:(1)模內電阻式直接加熱胚料鍛造成形製程具可行性;進行模內電阻式直接加熱胚料時,預壓裝置可改善加熱不良的狀況;(2) 本研究成功將SCM440胚料在模具內直接快速加熱至1100℃進行螺栓頭部之鍛壓成形,且提出一種漸進式加熱成形方式,能改善螺栓頭部成形的填充性;(3) 應用於718及C276之鎳基合金時,其加熱趨勢與SCM440之加熱趨勢有所差異,造成胚料整體溫度無法達到鍛造加工溫度範圍或是胚料局部溫度過高超過熔點而成形失敗。


How to develop special alloy fastener products with high price value for better profitability is the top priority that faces Taiwan''s metal forging industry, especially the manufacturers of screws. To face the tougher press forging of special metals, there are the following hot forging press: (1) heating and then forging billets inside the furnace; (2) heating by electromagnetic coil induction, and (3) heating by electric heating rod die. These approaches, however, require forging after heating, and the consequent partial temperature drop can change the material stress. Meanwhile, a direct resistive heating to forge billets inside the mold not only reduces the uneven distribution of material temperature, surface oxidation and surface material coarsening, but also alleviates the stress hike resulted from the material temperature drop during the forging process, thus greatly improves the malleability and mass production capacity of nickel-base superalloy materials. Also, the nickel material is a key factor to the forging process and simulation parameters.
In view of this, this research proposes a forging approach that directly heats billets inside a mold. The study comes in four parts: (1) simulation of the bolt head forging process; (2) experiment of the direct resistive heating inside a mold; (3) experiment of the resistive heating inside the mold to forge the bolt head; and (4) experiment of the nickel alloy resistive heating inside the mold to forge the bolt head. The software tools DEFORM-3D and DEFORM-2D are used to simulate the bolt head heating and forging patterns and, based on the simulation results, real molds are built to test the resistive heating inside the molds, followed by tests of resistive heating and forging of bolt heads inside the molds, and finally nickel-based alloy materials are taken for experiment and discussion of the resistive heating and forging of bolt heads.
The experiment results show that (1) the direct resistive heating and forging of billets inside the mold is feasible, and using a preload device can correct the poor heating; (2) this research has successfully heated the SCM440 billet, swiftly and directly, up to 1100℃ for the bolt head forging process, thus proposed a gradual heating pattern to improve the filling of the bolt head forging; (3) when this approach is applied to 718 and C276 nickel alloys, the heating pattern is different from that with SCM440, causing the overall temperature of the billet unable to reach the forging temperature or causing the billet''s partial temperature over the melting point, resulting in failed forging.


摘要......................................................i
ABSTRACT.................................................ii
誌謝......................................................iv
目錄.....................................................vii
表目錄....................................................vii
圖目錄...................................................viii
第一章 緒論.................................................1
1.1 研究背景................................................1
1.2 研究動機與目的...........................................2
1.3 研究方法與步驟...........................................3
1.4 論文總覽................................................4
第二章文獻回顧...............................................7
2.1電器式加熱(Resistance-heating)成形技術之文獻回顧.............7
2.2精密鍛造(Precision/Micro Forging)技術之文獻回顧............10
2.3鎳基超合金材料基礎性質及成形可模擬性之文獻回顧.................12
第三章 實驗方法與設備........................................22
3.1試驗材料基本性質..........................................22
3.1.1材料熱壓縮試驗.........................................22
3.2電阻式加熱成形實驗機台設置.................................22
3.2.1電阻式加熱單元.........................................23
3.2.2油壓動力單元...........................................23
3.3 DEFORM-3D螺栓頭部成形模擬參數規劃.........................23
3.3.1網格收斂性分析參數規....................................23
3.3.2不同直徑之圓胚成形模擬參數規劃............................24
3.3.3不同溫度之成形模擬參數規劃...............................24
3.3.4鎳基材料不同溫度成形模擬參數規劃..........................24
3.3.5鎳漸進式成形模擬參數規劃.................................24
3.4模具與胚料試驗設置........................................24
3.4.1模具設計及加工製作......................................24
3.4.2胚料尺寸參數設置........................................25
3.5模內電阻式加熱與成形實驗設置................................25
3.5.1模內電阻式加熱設置......................................25
3.5.2模內電阻式加熱成形實驗設置...............................26
第四章 實驗結果與討論........................................37
4.1材料壓縮實驗與模擬探討.....................................37
4.1.1材料壓縮試驗結果與探討...................................37
4.1.2小圓柱壓縮試驗模擬結果探討...............................37
4.2 DEFORM-3D螺栓頭部成形模擬結果探討.........................38
4.2.1網格收斂性分析探討......................................38
4.2.2不同直徑胚料成形之模擬探討...............................38
4.2.3不同溫度之成形模擬探討...................................38
4.2.4胚料內部應力模擬探討....................................38
4.2.5胚料內部應變模擬探討....................................39
4.2.6鎳基材料不同溫度成形模擬探討..............................39
4.2.7漸進式成形模擬探討......................................39
4.3模內直接加熱胚料螺栓頭成形實驗結.............................39
4.3.1模內電阻式加熱模擬及實驗結果..............................39
4.3.2模內整體式加熱成形實驗與模擬..............................40
4.3.3模內漸進式加熱成形模擬及實驗結果...........................40
4.4鎳基合金電阻式模內加熱成形實驗..............................40
4.5本章小結論..............................................41
第五章 結論................................................57
5.1研究成果總結.............................................57
5.1未來研究方向與展望........................................57
參考文獻...................................................58
Extended Abstract.........................................60
作者簡歷...................................................65



[1] 周俊宏【2003】,金屬二次加工Technology roadmap專題研究-沖壓、鍛造,經濟部技術處產業知識服務(IT IS)計畫出版。
[2] E. Merrtgold【1998】, F. H. Osman, “Forming of complex geometries with differential heating”, Journal of Materials Processing Technology, pp179~183.
[3] M. Hua, S. Q. Lu【2001】, “FEM simulation of the flat-die perform forging of steel shaft-disc type components by thermal differential heating”, Journal of Materials Processing Technology, pp52~58.
[4] .S. Yoshihara, B. J MacDonald, H. Nishimura, H. Yamamotoc, K. Manabec【2004】, “Optimisation of magnesium alloy stamping with local heating and cooling using the finite element method”, Journal of Materials Processing Technology, pp319~322.
[5] K. L. Schlemmer, F. H. Osmanb【2005】, “Differential heating forming of solid and bi-metallic hollow parts”, Journal of Materials Processing Technology, pp564~569.
[6] O. O kmana, M. Ozmena, H. Huwilerb, A. E. Tekkaya【2007】,“Free forming of locally heated specimens”, International Journal of Machine Tools & Manufacture 47, pp1197–1205.
[7] N. Biba【1998】, “Simulation of coupled problem of electric upsetting“, Journal of Materials Processing Technology, 8 0-81, pp.184-187.
[8] 葉揚,宋志強【2005】,對電鐓機夾鉗的研究,CMET鍛壓裝備與製造技術,pp.38-3.
[9] S. Maki 【2002】et al., Application of resistance heating technique to mushy state forming of aluminium alloy. Journal of Material Processing Technology, 125-126, pp.477-482 .
[10] 章爭榮,孫友松,肖小亭,李才芳,羅天友,張韜【2002】,汽門毛胚終鍛成形過程的理論分析,模具工業,pp. 10-12。
[11] M. Shiomi 【2000】et al., A development of thixoforging using electric resistance heating, Metal Forming, pp. 349-354.
[12] S. Maki 【2003】et al., Sinter-joining of different metal powder compacts using resistance heating. Journal of Material Processing Technology, 143-144,561-566.
[13] K. Mori 【2005】et al., Warm and hot stamping of ultra high strength steel sheet, CIRP Annals Manufacturing Technology Volume: 54(1), 209-212.
[14] 李師俊,凌剛【2006】,Inconel751合金汽門熱鐓粗的數值模擬與優化設計,熱加工藝,pp.65-68 。
[15] 李師俊【2004】4月,機車汽門電鍛、模工藝的數值擬與參優化,中國農業大學碩士論文,業大學碩士論文。
[16] K. Mori 【2008】et al., Warm and hot punching of ultra high strength steel sheet, CIRP Annals - Manufacturing Technology 57,321–324.
[17] K. Mori 【2010】et al., Improvement of stretch flangeability of ultra high strength steel sheet by smoothing of sheared edge, Journal of Material Processing Technology, 210(4),653-659.
[18] K. Mori【2010】et al., Tailor Die Quenching in Hot Stamping for Producing Ultra-High Strength Steel Formed Parts Having Strength Distribution. CIRP Annals––Manufacturing Technology, 59 1, pp. 291–294.
[19] K. Mori【2010】et al., Resistance Heating of Side Wall of Cup for Warm and Hot Spline Forming. Steel Research International, Supplement Metal Forming, 81 9, pp. 663–666.
[20] K. Mori【2011】et al., Spline forming of ultra-high strength gear drum using resistance heating of side wall of cup, CIRP Annals - Manufacturing Technology 60(1), 299-302.
[21] K. Mori【2012】et al., Punching of Ultra High Strength Steel Sheets Using Local Resistance Heating of Shearing Zone, Journal of Material Processing Technology, 212, 534-540.
[22] 吳柏賢, 許源泉【2011】,”中空管材差溫電氣端鍛之塑性成形分析” ,精密機械與製造科技研討會,台灣,墾丁。
[23] 吳柏賢, 許源泉【2011】,”空心管材電氣鍛粗之溫度分佈與凸脹變形分析”,精密機械與製造科技研討會,台灣,墾丁。
[24] Yasunori Saotome【2001】, “Superplastic backward microextrusion of microparts for micro-electro-mechanical systems”, Journal of Materials Processing Technology 119,307-311.
[25]鄒國益【2010】,汽車電瓶接頭螺絲多道次鍛造成形之研究,精密機械與製造科技研討會論文集 PMMT.
[26] 許昭和、謝合法等人【2007】,圓型螺帽成型分析,國立高雄應用科技大學模具工程系碩士論文。
[27] 林豐智、許源泉、管金談【2000】,六角螺帽冷鍛製程道次與預成形設計之研究,第十七屆機械工程研討論文集,高雄,臺灣,pp43~50。
[28] 黃宗立【1998】,螺絲頭冷鍛之實驗與數值分析,第二十二屆全國力學會議,pp.409-161.
[29] 汪國順【2003】9月,“汽門電熱鐓粗的工藝研究及有限元模擬”,華中科技大學碩士論文。
[30] 汪國順,夏巨諶,胡國安,王新云,李乾方,徐光暐【2004】,“汽門電熱鍛粗工藝的數值模擬”,塑性工程學報. Vol. 11, pp. 57-60.
[31] 蘇育德、黃世疇【2008】,718鎳基超合金徑向鍛造成形模擬分析與探討,工程科技與教育學刊,第五卷,第四期,530-544.
[32] Davis, J. R. 【2000】, ASM Specialty Hankbook Nickel, cobalt, and their alloys, American Society for Metals.
[33] Wang, Wen-Ge, and Wen Gao【2005】, New Technology & Characteristics of Deformation Process for Hydraulic Radial Forging Machine, Baosteel Co. Ltd.
[34] 廖子源【2008】,”In625/A286熱壓縮實驗”,Southern Taiwan University 暑期工讀結案報告.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top