(3.80.6.131) 您好!臺灣時間:2021/05/15 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉仁傳
研究生(外文):Jen-Chuan Yeh
論文名稱:骨板之產品分析與模具開發
論文名稱(外文):Analysis and Die Exploitation of Bone Plate
指導教授:楊東昇楊東昇引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:骨板316L不銹鋼鍛造有限元素分析
外文關鍵詞:Bone plates316L stainless steelForgingFinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於人們可能因為意外或老年疾病導致對骨科器材之需求,如年輕人可能因為運動發生骨折及扭傷,而老年人可能會罹患關節炎,因而骨科器材常見於各年齡層,其中人工關節、骨板系統需求量與高齡化社會也有相對的關係,隨著高齡化相關需求攀升,使得相關醫材與服務成為龐大商機。近年來台灣有許多傳統製造業者,也藉由技術水平整合,積極轉型切入醫材領域、跨足醫療器材業,此舉有助於提升技術研發能力、降低整體生產成本、同時改善台灣醫療器材業整體的競爭力。本文提出藉由鍛造製程配合CNC加工來節省材料與加工成本,不僅能強化骨板成品內部組職結構,也能擁有良好的表面精度。為了改善骨板加工生產方式,本研究針對骨板外型設計與鍛造模具方面來進行研究,透過電腦輔助有限元素分析,找出影響骨板強度的幾何外型並設計鍛造成形模具。
研究主要分為骨板外型分析、模具設計與成形分析、模具製作與鍛造實驗等三個部分,首先參考ASTM標準測試法,配合有限元素分析軟體對市售骨板產品進行強度探討,接著以螺絲孔為四孔的骨板為鍛件設計目標,設計其鍛件分模線與尺寸公差,並進行模具設計與金屬成形分析,探討不同胚料尺寸、模具設計與製程參數,藉由分析結果求出較佳的胚料尺寸、模具設計與製程參數,並進行模具製作與鍛造實驗,最後觀察鍛件外形與尺寸量測以評估是否修模,並將實驗結果與模擬結果進行比對,完成有限元素模擬分析的驗證。期望研究成果能對相關產業在骨板製程規畫與模具設計上有參考的價值。

People may need orthopedic equipment due to accidental injuries or age-related diseases. For examples, sports may bring youngsters fractures and sprains, while elderly people may suffer from arthritis. As a results, use of orthopedic equipment can be seen in all ages, making related medical materials and services a huge business opportunity. In recent years, many Taiwanese traditional manufacturers have horizontally integrated their technologies to transform and engage in the medical equipment and material market. This engagement can help the industry to improve the research and development capacity, reduce overall production costs, and meanwhile enhance the integrated competitiveness of the Taiwan medical equipment industry. This research proposes to use forging coupled with CNC processing to save the material and processing costs, so that the bone plate internal texture structure can be enhanced and the surface precision can also be perfected. To improve the bone plate processing approach, this article studies the designs of the bone plate appearance and forging molds. By way of a computer-aided finite element analysis, the impact of the 316L stainless steel bone plate''s geometric appearance is discussed and a forging mold is designed. In the end, forging experiments are given.
This research comes in three parts, which are bone plate appearance analysis, mold design and formation analysis, and mold making and forging experiments. To start with, the ASTM standard test method is taken, coupled with a finite element analysis software, to explore the strength of the bone plate. Then, the bone plate forging pieces and molds are designed and, through the metal formation analysis, billets of various specifications, the mold design, and production parameters are discussed. Based on a better parameterized data, the mold is then produced for the forging experiments. And then the appearance of the forging pieces is observed and the sizes are measured to decide whether modification on the mold is needed. The experiment results are compared with the simulation results to complete the verification of the finite element simulation analysis. The forging experiment reveals that the material''s flow pattern is conformable to the trend of the simulative analysis, a confirmation of the accuracy of this research. Hopefully, the research results can provide useful reference to the bone plate production planning and mold designing.

中文摘要...i
英文摘要...ii
誌謝...iii
目錄...iv
表目錄...vi
圖目錄...vii
符號說明...x
第一章 緒論...1
1.1 前言...1
1.2 研究動機...2
1.3 研究目的...4
1.4 文獻回顧...4
1.5 研究方法...7
1.6 論文總覽...9
第二章 研究原理...10
2.1 有限元素法...10
2.1.1 有限元素法基本觀念...10
2.1.2 有限元素法基礎理論...11
2.2 應用軟體介紹...13
2.2.1 SolidWorks...13
2.2.2 ANSYS Workbench...13
2.2.3 DEFORM...13
2.2.4 DEFORM解析模式...14
2.3 金屬成形...15
2.4 美國材料與試驗協會(ASTM)與標準測試...16
2.5 摩擦理論...16
第三章 骨板外型分析...18
3.1 模型建立...18
3.2 參數設定...20
3.2.1 網格類型與元素設定...20
3.2.2 邊界與參數設定...21
3.3 外型尺寸模擬規劃...22
3.4 骨板外型變數分析結果...23
3.4.1 孔距之影響...23
3.4.2 板厚之影響...29
3.4.3 直徑之影響...35
3.5 分析結果討論...41
第四章 模具設計與金屬成形分析... 42
4.1 模具設計...42
4.2 模擬參數規劃...44
4.3 鍛造成形分析結果...45
4.3.1 胚料尺寸...45
4.3.2 網格收斂性...46
4.3.3 廢邊型式...46
4.3.4 模具圓角...48
4.3.5 傾斜角度...50
4.3.6 摩擦係數...53
4.3.7 胚料溫度...54
4.4 決定模具設計與實驗參數...56
第五章 模具製作與鍛造實驗...58
5.1 模具製作...58
5.2 實驗設備...58
5.3 實驗結果與比對...61
5.4 成品尺寸量測...63
第六章 結論與未來展望...65
5.1 結論 ...65
5.2 未來展望...65
參考文獻...66
簡歷(CV)...68

[1]Kent Marshall Van De Graaff, 2002, Human Anatomy, 6th Ed, McGraw-Hill.
[2]Elaine Nicpon Marieb, Katja Hoehn, M.D. Ph.D., 2012, human anatomy and physiology, 9th Ed, Benjamin-Cummings.
[3]資誠聯合會計師事務所,台灣醫療產業概況,2012年6月,p.28。
[4]張慈映,全球醫療器材產業展望,工研院產業經濟與趨勢研究中心,2012/7/3。
[5]Zimmer, Dynamic Hip Screw Plate System, http://www.zimmer.com
[6]Synthes, 2008, Dynamic Hip Screw, http://www.synthes.com
[7]N. Inagaki, 1996, Plasma Surface Modification and Plasma PolymerizationTexte Imprime, Technomic Publishing Company.
[8]Keith L. Moore, et al., 2009, Clinically Oriented Anatomy, 6th Ed, Lippincott Williams & Wilkins.
[9]J Cordey, M Schneider, M Buhler, 2000, "The epidemiology of fractures of the proximal femur", njury, Vol. 31, Supplement 3, pp. 56-61, September.
[10]張燦勳、王文彥、張婉琪、曾俊豪、蘇賢修,2012,“不銹鋼骨科醫療器材暨骨板成形現況與應用”,鍛造,第廿一卷,第一期,頁8~13,3月。
[11]蔡盛祺等編著,2002,鍛造模具設計手冊,第二版,金屬工業研究發展中心,高雄。
[12]I.B. Schipper, R.K. Marti, Chr. van der Werken, 2004, "Unstable trochanteric femoral fractures:extramedullary or intramedullary fixation Review of literature", Injury, Vol. 35, Issue 2, pp. 142-151, February.
[13]R.Willoughby, 2005, "Dynamic hip screw in the management of reverse obliquity intertrochanteric neck of femur fractures", Injury, Vol. 36, Issue 1, pp. 105-109, January.
[14]Dylan P.A. Jewell, et al., 2008, "Locking plates increase the strength of dynamic hip screws", Injury, Vol. 39, Issue 2, pp. 209-212, February.
[15]魏忠景,2006,“股骨近端骨折治療之有限元素分析與生物力學測試”,國立台灣科技大學機械工程系,碩士論文。
[16]黃建智,2008,“動態髖骨螺絲之生物力學分析”,國立台灣大學機械工程學研究所,碩士論文。
[17]黃振興,2009,“股骨骨板之參數分析與最佳化設計”,國立台灣科技大學機械工程系,碩士論文。
[18]柳孟鏘,2011,“股骨近端截骨術固定裝置之生物力學分析”,中原大學醫學工程研究所,碩士論文。
[19]黃守成、周金龍、陳怡安、王凱弘,2003,“316L不銹鋼骨板鍛件開發”,鍛造,第十二卷,第四期,頁51~54,11月。
[20]M. Jolgaf and A.M.S. Hamouda, 2003, "Development of a CAD/CAM system for the closed-die forging process", Journal of Materials Processing Technology, Vol. 138, Issues 1-3, pp. 436-442 , July.
[21]B.I. Tomov, V.I. Gagov and R.H. Radev, 2004, "Numerical simulations of hot die forging processes using finite element method", Journal Processing of Materials Technology, Vol.153-154, pp. 352-358, November.
[22]林家瑋,2005,“熱鍛模具設計之有限元素分析”,國立台灣大學機械工程學研究所,碩士論文。
[23]許源泉、林恆勝、彭御芳,2010,“十字沖頭擠鍛製程之最佳化分析與預測”,鍛造,第十九卷,第二期,頁37~47,6月。
[24]黃俊嘉,2011,“螺絲夾尾模具阻料溝斷面最佳化設計”,國立高雄應用科技大學模具工程系,碩士論文。
[25]古明昇,2001,“溫度及應變率對316不銹鋼塑性變形之影響”,國立臺灣大學機械工程學研究所,碩士論文。
[26]王俊翔,2004,“沃斯田鐵系不銹鋼鍛造接合研究”,國立屏東科技大學機械工程系,碩士論文。
[27]陳威廷,2006,“沃斯田鐵系不銹鋼高溫變形阻抗之研究”,國立台灣科技大學機械工程系,碩士論文。
[28]M.F. Abbod, et al., 2007, "Sellars,Modelling of Dynamic Recrystallisation of 316L Stainless Steel using a Systems Approach", Materials Science Forum, Vol. 539-543, pp. 2455-2460.
[29]Woei-Shyan Lee, et al., 2012, "High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading", Journal of Nuclear Materials, Vol. 420, Issues 1–3, pp. 226-234, January.
[30]ASTM F384-06, 2011, American Society for Testing Material (ASTM).
[31]ASTM A240/A240M-05, 2005, American Society for Testing Material (ASTM).
[32]http://www.matweb.com
[33]許源泉,1990,鍛造學-理論與實習,三民書局。
[34]S.L. Semiatin, 1988, ASM Handbook, Volume14, 9th Ed., American Society for Metals.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top