(3.238.96.184) 您好!臺灣時間:2021/05/08 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊宗憲
研究生(外文):Tsung-Hsien Yang
論文名稱:鎂合金板材溫間恆溫成形模具與工件之接觸分析
論文名稱(外文):The Asperity Contact Analysis of Magnesium Alloys Sheet During Warm Isothermal Forming
指導教授:楊東昇楊東昇引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:溫間板金磨擦試驗機表面峰接觸行為接觸面積表面粗糙度
外文關鍵詞:warm sheet friction testersheet surface peak ascontact arearoughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鎂合金在常溫下成形性不佳,需加熱來增加其成形性,因此鎂合金板材之溫間成形技術也漸受到重視。而鎂合金板材溫間成形過程中摩擦與潤滑扮演重要角色,其會影響其應力與應變分佈、成形性及表面形貌,而目前對於室溫下成形之模具與板材界面磨潤行為之研究較多,而本研究主要針對溫間恆溫成形過程中模具與鎂合金板材表面峰接觸行為及工件表面品質之研究。
本研究首先在不同溫度之恆溫狀況下,利用溫間板金磨擦試驗機,觀察模具與鎂合金板材在不同溫度且恆溫下之接觸行為及表面品質探討,包括進行純粹壓平、壓縮滑動等實驗,求得在不同參數下(如溫度、壓力、體應變率及相對滑動距離等)之接觸面積,其次得到不同溫度、壓力、體應變率及相對滑動距離下的表面粗糙度。另外藉由類神經網路建構在不同溫度、壓力、體應變率及相對滑動距離與接觸面積及表面粗度的預估模式。經由上述實驗可以得知在純粹壓平中當摩擦因子增加,接觸面積比會減少,而粗糙比則會增加,當壓平率增加,接觸面積比會減少,而粗糙比則會增加,當溫度越高時,接觸面比會增加,而粗糙比會減少。在滑動接觸中當摩擦因子增加時,接觸面積比會增加,而粗糙比會減少,當變率增加時,接觸面積比會增加,而粗糙比會減少,當溫度增加時,接觸面比會增加,而粗糙比會減少。



Magnesium alloy under room temperature has poor formability. It needs to be heated to increase its formability, and therefore the warm forming technology of magnesium alloy sheets are getting more and more attention. During the warm forming process, however, friction and lubrication play an important part, affecting the stress and strain distributions, formability, and surface appearance. In the academic field, commonly available are studies on molds formed under room temperature as well as friction and lubrication between metal sheets, while this research is focused on the behavior of contact between the mold and magnesium alloy sheet surface peak as well as the quality of the workpiece surface.
To start with, under thermostatic conditions of different temperatures, this research uses a warm sheet friction tester to observe the behavior of contact between the mold and magnesium alloy sheet and explore the surface quality. The experimental tests include simple flattening and compressed sliding to get the contact areas with different set of parameters (e.g. temperature, pressure, volumetric strain rate, and sliding relative distance), and then get the surface roughness under these sets of parameters. Also, neural network is used to build a model to predict the contact areas and surface roughness under the different sets of parameters. The experiment results show that in the simple flattening process, the following rules apply: (1) increased friction factor reduces the contact area but increases the roughness; (2) increased flattening rate reduces the contact area but increases the roughness; (3) when the temperature gets higher, the contact area will be increased but the roughness will be decreased. In the sliding contact, the following rules apply: (1) increased friction factor increases the contact area but reduces the roughness; (2) increased variable rate increases the contact area but reduces the roughness; (3) when the temperature gets higher, the contact area will be increased but the roughness will be decreased.



摘要 .................................i
Abstract ............................ii
誌謝 .................................iii
目錄 .................................iv
表目錄 ................................v
圖目錄 ................................vi
符號說明 ...............................viii
第一章 緒論 ............................1
1.1 研究動機與目的 ......................1
1.2 文獻回顧 ...........................3
1.3 研究方法 ...........................6
1.4 論文總覽 ...........................8
第二章 研究原理 .........................9
2.1 有限元素法(FEM) ....................9
2.2 DEFORM軟體簡介 ....................13
2.3 相關理論 ...........................16
2.4 表面粗度的參數之定義 .................17
2.5 類神經網路 .........................18
第三章 溫間成形表面峰接觸行為 .............20
3.1 鎂合金板材性質測試 ..................20
3.2 純粹壓平試驗 .......................24
3.3 滑動接觸試驗 .......................38
3.4 獲得表面接觸參數預估模式 .............52
第四章 結論與建議 ......................58
4.1 結論 .............................58
4.2 建議 .............................59
參考文獻 .............................60
Extended Abstract ...................63
簡歷 .................................67



[1]Greenwood, J.A. and Williamson, J.B.P., 1996, “Contact of Nominally Flat Surface”, Proc. y.Soc., London, A295, pp.300-319.
[2]So., H. and Liu, D.C.,1998, “An Elastic-Plastic Asperity Microcontact Model for Rough Surfaces”, ASME, J.of Tribology., Vol.120, pp.82-89.
[3]Horng, J.H., 1998, “An Elliptic Elastic-Plastic Asperity Microcontact Model forRoughness Surfaces”, ASME, J. of Tribology., Vol.120, pp.82-89.
[4]Greenwood, J.A. and Rowe, G.W., 1965, “Deformation of Surface Asperitirs During Bulk Plastic Flow”, J.Appl.Phys.,Vol.36, pp.667-668.
[5]Wilson,W.R.D.and Sheu,S., 1988, "Real Area of Contact and Boundary Friction in Metal Forming,"Int. J.Mech. Sci., Vol. 30, No. 7, pp.475-489.
[6]Sutcliffe, M.P.F. and John, K.L,1990, ”Lubrication in Cold Strip Rolling in the Mixed Regim”, Proc.I.Mesh.E, Vol.204, pp.549-261.
[7]Korzekwar, D.A., Dawson, P.R.,and Wilson,W.R.D., 1992,”Surface Asperity Deformation during SheetForming”, Int.J.Mesh.Sci, Vol.34, No.7,pp.521-539.
[8]Yang,T.S., Lee, S.Q., Li,J.Y. and Nie, X.F., 2011, “Prediction of Surface Parameters for Strain HardeningMaterial of Asperity Flattening in Metal Forming” Materials Science Forum Vols.697-698, pp 470-473.
[9]Courtney-Pratt, J.S. and Eisner, E., 1957, “The Effect of a Tangential Force on the Contact of MetallicBodies”, Proc.R.Soc.London, Ser.A, Vol.238, pp.529-550.
[10]Rabinowicz., E., 1995, “Friction and Wear of Materials”, 2nd ed., John Wiley & Sons,Inc., pp.47.
[11]Kayaba, T., and Kato,K.,1978, “Experimental Analysis of Junction Growth with a Junction Model”, Wear, Vol.51, pp.105-116.
[12]Lo, S.W. and Tsai, S.D., 2002, “Real-Time Observation of the Evolution of Contact Area Under BoundaryLubrication in Sliding Contact, ”ASME,J.of Tribology, Vol.124, No.2, pp. 229-238.
[13]Lo, S.Y.and Yang, T.S.,2003, “A New Mechanism of Asperity Flattening in Sliding Contact---The Role ofElastic Tool Microwedge”, ASME, J. of Tribology.
[14]Yang, T.S., Li, S.Q., and Chang, S.Y., 2011, “Study on Surface Parameters of Asperity Flattening in Sliding Contact for Metallic Thin Film on Die Material during Metal Forming” Advanced Materials Research, Vols.328-330, pp.896-899.
[15]Saha,P.K.,Shih,H-C., and Wilson, W.R.D., 1996, “Modeling the Influence of PlasticStrain on BoundaryFriction in Sheet Metal Forming”, NAMRI Trans.(SME), pp.173-180.

[16]Lo, S.W.and Horng, T.C., 1999, "Surface Roughening and Contact Behavior in Forming of AluminumSheet", ASME J. of Tribology, Vol.121, pp.224-233.
[17]Yang, T.S. and Lo, S.W., 2006, ”Contact simulation for predicting surface topography in metal forming”, Tribology Letters, Vol.23,No.2, pp.121-129(SCI).
[18]Tong, W., Hector, L.G., Weiland, H., and Wieserman, L.F., 1997, “In-SituSurfaceCharacterization of aBinary Aluminum Alloy During Tensile Deformation”, Scripta Materialia, pp. 1339-1344.
[19]Lee, W., 1996, “Surface RougheninginMetal Forming Processes”, Ph.D.Thesis, Northwestern Northwestern University.
[20]Wilson, W.R.D. and Lee, W., 1997, “Mechanics of Surface Roughening in Metal Forming Processes”, Proc. of 1th Int. Conf. on Tribol. in Manufacturing Processes, Gifu, Japan, pp. 71-76.
[21]Mahmudi, R. and Mehdizadeh, M., 1998, “Surface Roughening During Uniaxial andqui-Biaxial Stretchingof 70-30 Brass Sheets”, J.Mater.Proc.Tech., Vol. 80-81,pp. 707-712.
[22]Lo, S.W. and Yang,T.S., 2003, “A New Mechanism of Asperity Flattening in Sliding Contact-The Role ofTool Elastic Microwedge” ASME Trans., Journal of Tribology, Vol. 125, No. 4, pp. 713-719.(SCI)
[23] Lo, S.W. and Horng, T.C., 1999, "Surface Roughening and Contact Behavior in Formingof AluminumSheet", ASME J. of Tribology, Vol. 121, pp.224-233.
[24]Yang,T.S., 2007, “A Refined Friction Modeling for Lubricated Metal Forming rocess”, Tribology Letters, Vol. 27, pp.289-300.
[25]Yang,T.S., 2007, “The prediction of surface topography in lubricated sheet metal forming”InternationalJournal of Machine Tools and Manufacturing.
[26]Yang, T.S., 2007, “The Strain path and Forming Limit Analysis of the Lubricated Sheet Metal FormingProcess”, International Journal of Machine Tools and Manufacturing, Vol.47, pp.1311-1321.
[27]陳俊豪,1992,有限元素法導論,科技圖書股份有限公司,台北,臺灣,pp.155~183,12月。
[28]蘇品書,1992,材料加工力學解析,復漢出版社,台南,臺灣,pp.36~40,pp.127~147,年12月。
[29]S. Kobayashi, S.I.Oh and T.Altan, 1989, “Metal Forming and The Finite-element Method”, Oxford university press, New York.
[30]唐志宏,2002,等徑角擠壓過程變形行為的研究,中南大學碩士論文,湖南長沙,中國,pp.15~19,5月。
[31]李俊賢,2005,具高深寬比深微孔精微零件之擠壓成形研究,國立虎尾科技大學機械與電工程研究所碩士論文,雲林,臺灣,7月。
[32]許源泉,鍛造製程分析講義,國立虎尾科技大學機械製造工程系,雲林,臺灣。

[33]DEFORM User’s Guide, 1999, “Scientific Forming Technologies Corporation,” Columbus OH.
[34]W.R.D.Wilson and S.Sheu, 1988, "Real Area of Contact and Boundary Friction in Metal Forming, " Int. J. Mech. Sci., Vol. 30, No. 7, pp. 475-489.
[35]S.W.Lo and S. D.Tsai, 2002, “Real-Time Observation of the Evolution of Contact Area Under Boundary Lubrication in Sliding Contact, ” ASME, J. of Tribology, Vol.124, No.2, pp. 229-238.
[36]楊東昇,2004,金屬成形磨潤模式的有限元素分析,國立雲林科技大學博士論文。
[37]李帥強,2008,金屬成型過程中表面參數之研究,國立虎尾科技大學機械與機電工程研究所碩士論文,雲林,台灣,7月
[38]T.Kondo, 1998, “The learning algorithms of the GMDH neural network and their application to the medical image recognition.” SICE.
[39]T. Kondo, A. S. Pandya and J. M. Zurada, 1999, “Logistic GMDH-type neural networks and their application to the identification of the x-ray film characteristic curve.”IEEE.
[40]A.Patrikar and J.Provence, 1996, “Nonlinear system identification and adaptive control using polynomial networks.”Mathl.Comput.Modeling, vol.23, No.1/2.
[41]A.R.Barron, 1984., “Predicated square error:a criterion for automatic model selection in self-organizing methods in modeling: GMDH type algorithm.” Farlow, S.J.Ed. Marcel-Dekker, New York
[42]陳國洲,2010,鎂合金數位相機外殼衝壓成形之多道次製程設計與分析,國立虎尾科技大學創意工程與精密科技研究所碩士論文。
[43]黃庭彬,2005,AZ31美合金板材非恆溫引伸成形性之研究,聖約翰科技大學自動化及機電整合研究所碩士論文。
[44]Song Yu, 2007, Ductile fracture modeling of initiation and propagation in sheet-metal blanking processes, Journal of Materials Processing Technology pp.187–188,69–172.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔