( 您好!臺灣時間:2024/05/18 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Pervin Akter
論文名稱(外文):Application of Thermostable Aspartate aminotransferase (TtAspAT) for biosynthesis of homophenylalanine by using L-Glutamate
指導教授(外文):Hwang, Tzann-Shun
口試委員(外文):Huang, Pung-LingSheu, Der-ShyanHwang, Tzann-Shun
外文關鍵詞:TtAspATEnzymatic assayL-GlutamateL-HomophenylalnineBioconversion
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
Aspartate aminotransferases (AspAT) can catalyze the reversible transamination reaction from aspartate to α-ketoglutarate to form glutamate and oxaloacetate. T. thermophilus AspAT (TtAspAT) has been cloned from HB8 by Okamoto et al. (67) and crystal structure has been resolved by Nakai et al.(64). It presents a substrate preference of amino acids with carboxyl group (aspartate and glutamate) and also found to possess significant activity against aromatic amino acids and branched-chain amino acids. Our previous study showed that TtAspAT have the ability to catalyze the synthesis of L-homophenylalanine, which is an important compound in the synthesis of anti-hypertensive drugs, the angiotensin-converting enzyme (ACE) inhibitors. TtAspAT is of advantage in high thermostabilty and having better activity than E. coli AspAT.
The objective of this study was to investigate the best condition to synthesis L-homophenylalnine (L-HPA) using TtAspAT and L-Glutamate as a substrate. This enzyme was also test for its activity against monosodium glutamate (MSG) in synthesizing L-homophenylalanine (L-HPA), since MSG is the cheapest amino acid in food industry. In this study, TtAspAT showed the better activity on Tris-HCl buffer than Bis-Tris Propane against L-Glutamate. Significant effect was observed in terms of Tm, pH, L-Glutamate and D-Alanine. Bioconversion of homophenylalanine was conducted at 60°C at different intervals and showed the highest rate after 15-hour incubation.

1.1 Aspartate Aminotransferase; An essential enzyme for all organisms. 1
1.2: Thermus thermophilus Aspartate Aminotransferase (TtAspAT) 2
1.3: Hypertension (High Blood Pressure); a common disease for adult 4
1.4 Angiotensin Converting Enzyme (ACE) 5
1.5 ACEIs (Angiotensin-converting-enzyme inhibitors) 7
1.6. Homophenylalanine and its relationship in Biopharmaceuticals 10
1.7 Examples of biotransformation of L-homophenylalanine 13
1.7.1. The hydantoinase or carbamoylase process in synthesizing of L-homophenylalanine: 14
1.8. Previus study and Research purpose 16
CHAPTER – 2 18
2.1. Bacterial strains, plasmids and reagents 18
2.2. Overexpression and purification of recombinant enzyme (pET-TtAspAT) 18
2.3. Determination of protein concentration 19
2.4. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 19
2.5.1. Activity of TtAspAT using Aspartate 20
2.5.2. Activity of TtAspAT using L-Glutamate 20
2.6. Bioconversion of Homophenylalanine 21


CHAPTER – 3 22
3.1. Purification of protein by Ni-NTA affinity Chromatography 22
3.2. Enzymatic activities of TtAspAT by using L-Aspartate as an substrate 22
3.3.1. Effect of Temperature 22
3.3.2. Effect of pH 23
3.3.3. Effect of D-Alanine and L-Glutamate 23
3.4. Synthesis of Homophenylalanine 23

1. Ahmad AL, Oh PO, Abd Shukor SR. 2009. Sustainable biocatalytic synthesis of
L-Homophenylalanine as pharmaceutical drug precursor. Bioteh. Adv. 27: 286-296.
2. Asano Y, Yamada A, Kato Y, Yamaguchi K, Hibino Y, Hirai K. 1990. Enantioselective synthesis of (S) amino acids by phenylalanine dehydrogenase from Bacillus-sphaericus: use of natural and recombinant enzymes. J. Org. Chem : 55: 5567-5571.
3.Allen P, Kaplan MD, Kusumam J. Michael S. 2002. Pathways for bradykinin formation and inflammatory diseases. J.Allergy Clin. Immunol. 109: 195-209.
4. Aihara KO, Hirata H, Takahashi R, Nakamura, Y. 2005. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J. Am. Coll. Nut. 24: 257–65.
5. Bachoudhi N. 1986. MgATPase activity of myosin subfragent 1. The dimer is more active than the monomer. J. Mol. Biol. 191: 247-254.
6. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein- dye binding. Anal. Biochem. 72:248–254.
7. Brunner HR, Nussberger J, Waeber B. 1985. The present molecules of converting enzyme inhibitors. J. Cardiovasc. Pharmacol. 7:S2-S11.
8. Bommarius AS, Riebel BR. 2004. Biocatalysis: Fundamentals and Applications. Weinheim: Willey-VCH Verlag GmbH.
9. Cohen ML, Kurz KD. 1982. Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421. J. Pharmacol. Exp. Ther. 220:63-69.
10. Cheng A, Frishman WH. 1998. Use of angiotensin-converting enzyme inhibitors as monotherapy and in combination with diuretics and calcium channel blockers. J. Clin. Pharmacol. 38: 477-491.
11.Chen ST, Tseng MJ, Kao, T. Sookkheo B. Surat B. 2000. Faciole synthesis of L-homophenylalanine by equilibrium shift enzymatic reaction using engineered tyrosine aminotransferase. Academia Sinica, U.S. patent 6, 146, 859.
12.Chen ST, Huang WH, Wang KT. 1994. Kinetic resolution of esters of amino acids in t-butanol containing 5% water catalyzed by a stable industrial alkaline protease. Chirality. 6:572-576.
13. Chobanian AV, Bakris GL, Black HR. 2003. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure". Hypertension 42: 1206-52.
14.Carretero OA, Oparil S. 2000. Essential hypertension. Part I: definition and etiology". Circulation. 101: 329–35.
15.Curb JD, Pressel MS, Cutler JA, Savage PJ, Applegate WB, Black H, Camel G, Davis BR, Frost PH, Gonzalez N. 1996. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated hypertension. 276:1886–1892.
16.de la Torre F, Moya-Garcia AA, Suarez MF, Rodriguez-Caso C, Canas RA, Sanchez-Jimenez F , Canovas FM. 2009. Molecular modeling and site-directed mutagenesis reveal essential residues for catalysis in a prokaryote-type aspartate aminotransferase. Plant Physiol. 149: 1648–1660.
17.Desmarais WT, Bienvenue DL, Bzymek KP, Holz RC, Petsko GA, Ringe D. 2002. The 1.20 Å resolution crystal structure of the aminopeptidase from Aeromonas proteolytica complexed with Tris: A tale of buffer inhibition 10 (8): 1063-1072.
18.Eckert KA, Kunkal TA. 1991. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl 1: 17-24.
19.Ehlers MRW, Riordan JF. 1991. Angiotensin-converting enzyme. Zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry.30:7118 –7126.
20.Fabris B, Jackson B, Cubela R, Mendelsohn FAO, Johnston CI. 1989. Angiotensin converting nenzyme in the rat heart of its inhibition in vitro and ex vivo. Clin. Exp. Pharmacol Physiol. 16: 309-313.
21.Ferrario CM, Chappell MC, Dean RH, Iyer SN. 1998. Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis. J. Am. Socm. Nephrol. 9:1716–1722.
22.Fisher ND, Williams GH. 2005. "Hypertensive vascular disease". In Kasper DL, Braunwald E, Fauci AS, et al.. Harrison's Principles of Internal Medicine (16th ed.). New York, NY: McGraw-Hill. Pp.1463–81.
23.Fitzgerald, Murray, BA, Walsh, DJ. 2004. Hypotensive peptides from milk proteins. Aminotransferases in higher plants. In The Biochemistry of Plants. Eds. P.K. Stumpf and E.E. Conn. Academic Press, New York, pp 329–357.
24.Ghalanbor, Z , Ghaemi n, Sayed-Amir M, Massoud A, Mehran HR, Khosro K, Bijan R. 2008. Binding of Tris to Bacillus licheniformis alpha-amylase can affect its starch hydrolysis activity. Protein Peptide Lett. 15 (2): 212–214.
25.Givan CV. 1980. Aminotransferases in higher plants. In: Stumpf PK, Conn EE, eds. The biochemistry of plants, Vol. 5. New York:Academic Press, 329-357.
26.Goldberg JM, Kirsch JF. 1996. The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate- determining steps, while that catalyzed by the Y225F mutant is dominant by ketimine hydrolysis. Biochemistry. 35 : :5280–5291.
27.Gordon-Weeks R, Koren’kov VD, Steele SH, Leigh RA. 1997. Tris is acompetitive inhibitor of K+ activation of the vacuolar H+pumping pyrophosphate. Plant Physiol. 114: 901-905.
28.Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL.2000. Hypertension antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N. Eng.l J .Med. 342:905-912.
29.Groenen PJ, Merck KB De Jong WW, Bloemendal H. 1994. Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur. J. Biochem. 225,:1-19.
30.Hoogwerf, Young JB. 2000. "The HOPE study. Ramipril lowered cardiovascular risk, but vitamin E did not". Clev. Clin. J. Med. 67: 287–293.
31.Hwang TZ, Cheng WC, Fu HC, Wu SP. 2012. Synthesis method of aromatic amino acids. US patent no: 8,183,016 B2.
32.Herning,T, Yutani K, Inaka K, Kuroki R, Matsushima M, Kikuchi M. 1992. Role of Proline residues in human lysozyme stability: A scaning calorimetric study combined with x-ray structure analysis of proline mutants. Biochemistry 31: 7077-7085.
33.Hsueh-Hsia L, Shih-Kuang H, Wei-De L, Nei-L C, Wen-Hwei H. 2005. Asymmetrical synthesis of L-Homophenylalanine using Engineered Escherichia coli Aspartate Aminotransferase. Biotechnol. Prog. 21:411-415.
34.Hayashi H, Mizuguchi H, Miyahara I, Nakajima Y, Hirotsu K, Kagamiyama H. 2003. J. Biol. Chem. 278: 9481–9488.
35.Houng JY, Wu ML, Chen ST. 1996. Kinetic resolution of amino acid esters catalyzed by lipases. Chirality.8: 418-422.
36.Hsu SK, Lo HH, Lin WD, Chen IC, Kao CH, Hsu WH. 2007. Stereoselective synthesis of l-homophenylalanine using the carbamoylase method with in situ racemization via N-acelamino acid racemose. Process Biochem. 42: 856-62.
37.Hubert C, Houot AM, Corvol P, Soubrier F. 1991. Structure of the angiotensin I-converting enzyme gene: two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 266:15377–15383.
38.Imada K, Sato M, Tanaka N, Katasube Y, Oshima T. 1991. Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 Å resolution. J. Mol. Biol. 222: 725-738.
39.Jäger J, Moser M, Sauder U, Jansonius JN. 1994. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J Mol Biol. 239:285–305.
40.Jasek, 978-3-85200-181- W. 2007. Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag.ISBN 4.
41.Kato R, Kuramitsu SS. 1993. RecA protein from an extremely thermophilic bacterium, Thermus thermophilus HB8. J. Biochem.114: 926-929.
42.Kim H, Nakaoka M, Yagi M, Ashida H, Hamada K, Shibata H , Sawa Y. 2003. Cloning, structural analysis and expression of the gene encoding aspartate aminotransferase from the thermophilic cyanobacterium Phormidium lapideum. J. Biosci. Bioeng. 95: 421–424.
43.Koketsu K, Mitsuhashi S, Tabata K. 92013. Identification of homophenylalanine biosynthetic genes from the cyanobacterium Nostoc punctiforme PCC&# and application to its microbial production by Escherichia coli. Appl. Environ. Microbiol. 79:2201-2208.
44.Kirsch JF, Eichele G, Ford G, Vincent MG, Jansonius JN, Gehring H. 1984. "Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure". J. Mol. Biol. 174: 497–525.
45.Laurence LB. 2006. Chapter 30. Renin and Angiotensin - Edwin K. Jackson".Goodman & Gilman’s The Pharmacological Basis of Therapeutics (11 ed.). McGraw-Hill.ISBN 0-07-142280-3.
46.Lacerda PSB, Ribeira JB, Leite SGF, Coelho RB, Lima ELD, Antunes OAC. 2006a. Microbial enantioselective reduction of ethyl-2-oxo-phenyl-butanoate. Biochem. Eng. J. 28: 299-302.
47.Liese A, Seelbach K, Wandrey C. 2000. Industrial Biotransformations. Weinheim: Willey-VCH Verlag GmbH.
48.Li X, Yeung CH, Chan ASC, Lee TS, Yang TK. 1999. An efficient synthesis of chiral homophenylalanine derivatives via enantioselective hydrogenation. Tetrahedron Asymmetry.10: 3863-3867.
49.Lo HH, Kao CH, Lee DS, Yang TK, Hsu WH. 2003. Enatioselective synthesis of (S)-2-amino-4-phenylbutanoic acid by the hydantoinase method. Chirality. 15: 699-702.
50.Lo HH, Hsu SK, Lin WD, Chan NL, Hsu WH. 2005. Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase. Biotechnol Prog: 21: 411-415.
51.Luis A, Pagan-Carlo MD, Lawrence A, Garcia MD, Joseph L, Hutchinson MD, Garry R, Buettner PhD, Richard E, Kerber MD. 1999. Captopril lowers coronary venous free radical concentration after direct current cardiac shocks. Chest. 116: 484-487.
52.Malashkevich VN, Strokopytov BV, Borisov VV, Dauter Z, Wilson KS, Torchinsky YM. 1995. Crystal structure of the closed form of chicken cytosolic aspartate aminotransferase at 1.9Å resolution. J. Mol. Biol. 247:111–124.
53.Matthews BW, Nicholson H, Becktel WJ. 1987. Enhanced protein thermostability from site –dirested mutations that decrease the entropy of unfolding. Proc. Natl.Acad. Sci. USA 84: 6663-6667.
54.Matsumura M, Signor G, Matthews BW. 1989. Substantial increase of protein stability by multiple disulphide bonds. Nature. 342: 291-293.
55.Mary D, Frank H, Elizabeth B, Kevin G, Michael G, Nancy S, Michael D, Betty W, Keith R, Raju J, Roger EB. 2000. A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9. Circ. Res. 87:1-9.
56.Maryanoff CA, Scott L, Shan DR, Villani FJ, Jr A. 1998. A crystallization-induced asymmetric transformation to prepare ®-4-chlorophenylalnine methyl ester. Tetrahedron Asymmetry. 9: 3247-3250.
57.McPhalen CA, Vincent MG, Jansonius JN. 1992. Domain closure in mitochondrial aspartate aminotransferase. J. Mol. Biol. 227:197-213.
58.Mehta PK, Hale TI, Christen P. 1989. Evolutionary relationships among aminotransferase. Tyrosine aminotransferase, histidine-phosphate aminotransferase and aspartate aminotransferase are homologous. Eur. J. Biochem. 186: 249-253.
59.Mehta PK, Hale TI, Christen P. 1993. Aminotransferases: demonstration of homology and division into evolutionary subgroups Eur. J. Biochem. 214: 549-561.
60.Menendez-Aris L, Agros P. 1989. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helics. J. Mol. Biol. 206: 397-406.
61.Miesak BH, Coruzzi GM. 2002. Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol. 129: 650-660.
62.Mishra R, Jain SR, Kumar A. 2008. A microbial production of dihydroxyacetone. Biotechnol. Adv. 26: 293-303.
63.Miyahara I, Hirotsu K, Hayashi H, Kagamiyama H. 1994. X-ray crystallographic study of pyridoxamine 5'-phosphate-type aspartate aminotransferases from Escherichia coli in three forms. J. Biochem.116:1001-12.
64.Nakai T, Okada K, Akutsu S, Miyahara, Kawaguchi S, Kato R, Kuramitsu S, Hirotsu K. 1999. Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. Biochemistry. 23: 2413-2424.
65.Nobel Y, Kawaguchi S-I, Ura H, Nakai T, Hirutsu K, Kato R, Kuramitsu S. (1998) The nobel substrate recognition Mechanism utilized by Aspartate Aminotransferase of the Extreme Thermophile Thermus thermophilus HB8. J. Biol. Chem. 273: 29554-29564.
66.O’Farrell PA, Sannia G, Walker JM, Doonan S. 1997. Cloning and sequencing of aspartate aminotransferase from Thermus aquaticus YT1. Biochem. Biophys. Res. Commun. 239: 810–815.
67.Okamoto A R, Kato R, Masui A, Yamagishi T, Oshima, Kuramitsu S. 1996. An aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8. J. Biochem. 119:135–144.
68.Ogbru O. ACE Inhibitors (Angiotensin Converting Enzyme Inhibitors)". MedicineNet.com. MedicineNet, Inc. Archived from the original on 26 March 2010. Retrieved 2010-03-20.
69.Ondetti MA, Cushman DW. 1981. Inhibition of the rennin-angiotensin system: a new approach to the therapy of hypertension. J Med Chem. 24: 355-361.
70.Poterszman A, Delare M, Thierry JC, Moras D. 1994. Synthesis and recognition of aspartyl-adenylate by Thermus thermophilus aspartyl-tRNA synthetase. J. Mol. Biol. 244: 158-167.
71.Rhee S, Silva MM, Hyde CC, Rogers PH, Metzler CM, Metzler DE, Arnone A. 1997. Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate. J. Biol. Chem. 272:17293-302.
72.Ribeiro JB. Ramos MD, Neto FRD, Leite SGF, Antunes OAC. 2003. Microbiological enantioselective reduction of ethyl acetoacetate. J. Mol. Catal. B. Enzyme. 24: 121-124.
73.Roberts SM. 1998. Preparative biotransformation: the employment of enzymes and whole-cells in synthetic organic chemistry. J. Chem Soc. Perkin Trans. 1: 157-169.
74.Robert R. Raymond EV. 1975. Azide as apreservative in assays of aspartate Aminotransferase Activity. Clin. Chem. 21:158-161.
75.Rozzel JD. 1985. Production of of L-4-phenyl-2-aminobutanoic acid by transformation. Genetics Institute, Inc., U.S. patent 4, 525, 454.
76.Sakaguchi K, Chai SY, Jackson B, Johnston CI, Mendelsohn FAO. 1988. Inhibition of tissue angiotensin converting enzyme: quantitation by autoradiography. Hypertension. 11:230-238.
77.Senuma M, Nakamichi K, Nabe K, Nishimoto S, Tosa T. 1989. Industrial-production of L-2-amino-4-phenylbutyric acid from 2-oxo-4-phenylbutyric acid by paracoccus denitrificans containing aminotrasferase activity. Apple. Biochem. Biotechnol. 22: 141-150.
78.Skidgel RA, Erdos E. 1993. Biochemistry of angiotensin I-converting enzyme. In: Robertson JIS, Nicholls MG, eds. The Renin-Angiotensin System. New York, NY: Raven Press Ltd. 10.1–10.10.
79.Stock P, Liefeldt L, Paul M, Ganten D. 1995. Local renin-angiotensin systems in cardiovascular tissues: localization and functional role. Cardiology. 86: 2–8.
80.Stallings WC, Pattridge KA, Strong RK, Ludwig ML. 1985. The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4A resolution. J. Biol. Chen. 260:16424-16432.
81.Sowers JR, Epstein M. 1995. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy: an update. Hypertension. 26: 869–879.
82.Sowers JR, Bakris GL. 2000. Antihypertensive therapy and the risk of type 2 diabetes mellitus. N. Engl. J. Med. 342:969–970.
83.Song L. 2003. Deletion of famesyl diphosphate accumulation in yeast ERG9 mutants. Anal Biochem. 317: 180-185.
84.Syldetk C, Laufer A, Muller R, Hoke H. 1990. Production of optically pure D-and L-amino acids by bioconversion of D, L-5-mono0substituted hydantoin derivatives. Adv. Biochem. Eng. Biotechnol. 16: 412-418.
85.Van Vark LC, Bertrand M, Akkerhuis KM. 2012. Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158 998 patients. Eur. Heart. J. 33: 2088-2097.
86.Volkin DB, Klibanov AM. 1987. Thermal distruction process in proteins involving cysteine residues. J. Biol. Chem. 282: 2945-2950.
87.Watson RJ, Rastogi VK. 1993. Cloning and nucleotide sequencing of Rhizobium meliloti aminotransferase genes: an aspartate aminotransferase required for symbiotic nitrogen fixation is atypical. J. Bacteriol. . 175: 1919-1928.
88.Wilkie SE, Lambert R, Warren MJ. 1996. Chloroplastic aspartate aminotransferase from Arabidopsis thaliana: an examination of the relationship between the structure of the gene and the spatial structure of the protein. J. Biovchem. 319:969-976.
89.Wyvratt MJ. 1988. Evaluation of angiotensin-converting enzyme inhibitors. Clin. Physiol. Biochem. 6:217-229.
90.Yagi T, Kagamiyama H, Nozaki M, Soda K. 1985. Glutamate-aspartate transaminase from microorganisms. Methods. Enzymol. 113, 83–89.
91.Yutani K, Hayashi S, Sugisaki Y, Ogasahara K. 1991. Role of conserved proline residues in stabilizing trypton synthesis α subunit. Analysis of mutants with alanine or glycine. Proteins 9:90-98.
92.Ziehr H, Kula M-R, Schidt E, Wandrey C, Klein J. 1985. Continuous production of L-phenylalanine by transamination. Biotechnol. Bioen. 29:482-487.

第一頁 上一頁 下一頁 最後一頁 top