一、中文部分
何秉劼(2012),運用支援向量機於企業財務危機之研究,中國文化大學會計學系未出版之碩士論文。呂理邦(2012),捐款人流失預測之決策系統,東華大學企業管理學系未出版之博士論文。李宜致(2008),資料探勘手術後減重效果分類模式之建構,輔仁大學商學研究所未出版之博士論文。林文修(2000),演化式類神經網路為基底的企業危機診斷模型︰智慧資本之應用,中央大學資訊管理研究所未出版之博士論文。林俊宏(2006),傳記式資料非線性甄選模式之建構-運用類神經網路並以櫃檯行員為例,中央大學人力資源管理研究所未出版之博士論文。林建宏(2008),利用LS-SVM 抑制NLOS 誤差之超寬頻TOA 無線定位,中山大學電機工程學系研究所未出版之碩士論文。林春霞(2012),資料探勘證劵業投資風險屬性分類模式之應用-以國內某證券公司為例,輔仁大學企業管理學系管理學碩士在職專班未出版之碩士論文。林恩汝(2007),應用二階段分類法提升Least square-support vector machine(LS-SVM)技術之分類正確率,勤益科技大學工業工程與管理系未出版之碩士論文。林琦珍(2011),舞弊偵測透過舞弊三角風險因子及資料探勘工具,中正大學會計與資訊科技研究所未出版之博士論文。施人英,陳文華,吳壽山(2007),探討支持向量機器在發行人信用評等分類模式之應用,資訊管理學報,14(3),155-178。高淑珍(2004),應用資料探勘於顧客回應模式之研究¬-以國內A壽險公司為例,成功大學企業管理學系博士班未出版之博士論文。陳瑞陽(2006),模糊客訴問題的原因分析及回饋系統,清華大學工業工程與工程管理學系博士班未出版之博士論文。陳承昌,史天元(2007),粗糙集方法應用於水稻田辨識之研究,航測及遙測學刊,12(2),121-131。郭秋榮(2009),全球金融風暴之成因、對我國影響及因應對策之探討,經濟研究,9,59-89。黃承龍,李德勝,彭定國,施政男(2004),運用約略集合理論建立電磁干擾診斷系統,管理與系統,11(3),367-385。
黃雅涵(2010),資料探勘投資風險屬性分類模式-以國內某銀行財富管理業務為例,輔仁大學管理學研究所未出版之碩士論文。曾立凱(2012),身心障礙者電腦輔具選用決策樹,臺灣科技大學工業管理系未出版之博士論文。葉宗翰(2010),運用支援向量機於按成本設計(DTC)預測系統之研究-以飛機結構系統研發為例,國防大學中正理工學院國防科學研究所未出版之博士論文。葉振山,鄭景俗(2005),強化粗糙集應用於闌尾炎之分類,醫療資訊雜誌,14(2),1-16。溫坤禮,永井正武,張廷政,溫惠筑(2008),粗糙集入門級應用,台北,五南出版股份有限公司。
賴建成(2012),小波轉換結合類神經網路於股價預測及價格發現之研究-以香港及中國指數現貨與期貨對台港兩地掛牌ETF為例,高雄第一科技大學財務金融研究所未出版之博士論文。二、英文部分
Afonso, A., Furceri, D., & Gomes, P. (2012). Sovereign credit ratings and financial markets linkages: Application to European data. Journal of International Money and Finance, 31(3), 606–638.
Afonso, A., Gomes, P., & Rother, P. (2007). What “hides” behind sovereign debt ratings? European Central Bank Working Paper Series, January(No. 711).
Alsakka, R., & Gwilym, O. A. (2012a). Rating agencies` credit sig-nals: An analysis of sovereign watch and outlook. Interna-tional Review of Financial Analysis, 21, 45-55.
Alsakka, R., & Gwilym, O. A. (2012b). Foreign exchange market reactions to sovereign credit news. Journal of International Money and Finance, 31(4), 845–864.
Bissoondoyal-Bheenick, E. (2005). An analysis of the determinants of sovereign ratings. Global Finance Journal, 15(3), 251-280.
Bissoondoyal-Bheenick, E. (2012). Do sovereign rating changes trigger spillover effects? Research in International Business and Finance, 26(1), 79-96.
Borensztein, E., Cowan, K., & Valenzuela, P. (2006). The sovereign ceiling lite and bank credit ratings in emerging markets economies. Inter-American Development Bank Working pa-per.
Borensztein, E., Cowan, K., & Valenzuela, P. (2007). Sovereign ceiling “lite”? The impact of sovereign ratings on corporate ratings in emerging market economies. International Monetary Fund Working Paper, No. 07/75.
Borio, C., & Packer, F. (2004). Assessing new perspectives on country risk. BIS Quarterly Review, December, 47-65.
Breiman, L. (1984). Classification and regression trees. United States: Wadsworth International Group.
Cantor, R., & Packer, F. (1996). Determinants and impact of sover-eign credit ratings. FRBNY Economic Policy Review, October, 37-54.
Chen, Y. S., & Cheng, C. H. (2009). Evaluating industry performance using extracted RGR rules based on feature selection and rough sets classifier. Expert Systems with Application, 36(5), 9448-9456.
Chen, Y. S., & Cheng, C. H. (2010). A Delphi-based rough sets fusion model for extracting payments rules of vehicle license tax in the government sector. Expert Systems with Application, 37(3), 2161-2174.
Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and Finance, 26(7), 1206-122 8.
Christopher, R., Kim, S. J., & Wu, E. (2012). Do sovereign credit ratings influence regional stock and bond market interdependencies in emerging countries? Journal of International Financial Markets, Institutions & Money, 22(4), 1070-1089.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
Dimitras, A. I., Slowinski, R., Susmaga, R., & Zopounidis, C. (1999). Business failure prediction using rough sets. European Journal of Operational Research, 114(2), 263-280.
Eliasson, A. C. (2002). Sovereign credit ratings. Deutsche Bank Re-search, January(No. 2-1).
Ferreira, M. A., & Gama, P. M. (2007). Does sovereign debt ratings news spill over to international stock markets? Journal of Banking & Finance, 31(10), 3162–3182.
Fitch Ratings. (2012). Sovereign data comparator June 2012. New York, United States: Author.
Fitch Ratings. (2013). Sovereigns. [Online]. Avalibale: http://www. fitchratings.com/web/en/dynamic/fitch-home.jsp [2013, Mar ch 12].
Gunn, S. R. (1998). Support vector machines for classification and regression (Technical Report). United Kingdom: University of Southamptom.
Hájek, P. (2011). Municipal credit rating modelling by neural net-works. Decision Support Systems, 51(1), 108-118.
Hartigan, J. A. (1975). Clustering algorithms (probability & mathematical statistics). United States: John Wiley & Sons Inc.
Ismail, S., Shabri, A., & Samsudin, R. (2011). A hybrid model of self-organizing maps (SOM) and least square support vector machine (LSSVM) for time-series forecasting. Expert Systems with Applications, 38(8), 10574-10578.
Quinlan, J. B. (1996). Improved use of continuous attributes in C4.5. Journal of Articial Intelligence Research, 4, 77-90.
Jüttner, D. J., & McCarthy, J. (2000). Modelling a rating crisis. Unpublished manuscript, Macquarie University, Sydney.
Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. Proceedings of World Academy of Science, Engineering and Technology, 12, 284-289.
Last, M., & Maimon, O. (2004). Compact and Accurate Model for Classification. IEEE Transactions on Knowledge and Data Engineering, 16(2), 203-215.
Mamudi, S. (2008). Lehman folds with record $613 billion debt [Online]. Available: http://www.marketwatch.com/story/leh man-folds-with-record-613-billion-debt [2008, September 1 5].
Mellios, C., & Paget-Blanc, E. (2006). Which factors determine sovereign credit ratings? The European Journal of Finance, 12(4), 361-377.
Moody`s. (2013). Sovereign. [Online]. Avaiable: http://www.moodys. com/ [2013, March 12].
Mulder, C., & Perrelli, R. (2001). Foreign currency credit ratings for emerging market economies. International Monetary Fund Working Paper, No. 191.
Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Science, 11(5), 341-356.
Polat, K., Günes, S., & Arslan, A. (2008). A cascade learning system for classification of diabetesdisease: generalized discriminant analysis and least square support vector machine. Expert Systems with Applications, 34(1), 482-487.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Mit Press Computational Models of Cognition and Perception Series, 1, 318-362.
Sengur, A. (2009). Multiclass least-squares support vector machines for analog modulation classification. Expert Systems with Applications, 36(3), 6681-6685.
Standard & Poor`s. (2011). 2010 Annual Global Corporate Default Study And Rating Transitions. New York, United States: Standard & Poor’s Financial Services LLC.
Standard & Poor`s. (2013). Sovereigns rating list. [Online]. Avaliable: http://www.standardandpoors. com/home/en/us [2013, March 12].
Suykens, J. A. K., Vandewalle, J., & Moor, D. D. (2001). Optimal control by least squares support vector machines. Neural Networks, 14(1), 23-35.
Swiniarski, R. W., & Skowron, A. (2003). Rough set methods in feature selection and recognition. Pattern Recognition Letters, 24(6), 833-849.
Tay, F. E. H., & Shen, L. (2002). Eonomic and financial prediction using rough sets model. European Journal of Operational Research, 141(3), 641-659.
Vellido, A., Lisboa, P. J. G., & Vaughan, J. (1999). Neural networks in business: A survey of applications (1992-1998). Expert Systems with Applications, 17(1), 51-70.
Ville, B. D. (2006). Decision trees for business intelligence and data mining: Using SAS enterprise miner. United States: SAS Institute.