(3.230.173.249) 您好!臺灣時間:2021/04/21 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周祖玥
研究生(外文):Chou,Tsu-Yueh
論文名稱:多階層財務預警模型
論文名稱(外文):A Multi-Stage Financial Crisis Prediction Model
指導教授:李慕萱李慕萱引用關係
指導教授(外文):Lee, Mu-Shan
口試委員:林淑莉童雅玲
口試委員(外文):Lin, Shu-LiTong, Ya-Ling
口試日期:2013-06-17
學位類別:碩士
校院名稱:中國文化大學
系所名稱:會計學系
學門:商業及管理學門
學類:會計學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:45
中文關鍵詞:財務危機公司治理
外文關鍵詞:Support Vector MachinesK-means
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討財務危機預警模型的構建是一個受到廣泛關注之研究課題,其所帶來的影響不僅是發生在公司內部亦會影響到公司外部的所有人,如何構建一個有效的預警模型在會計、財金與管理學門上皆為相當重要的任務,大部分財務危機預警模型的構建皆採用單一之型態,但任何之預警模型皆有其先天的限制,為了克服單一模型之限制,本研究基於整體學習之概念發展出一個新穎的整合模型,其包含三大構面:(1)資料前處理(T檢定)、(2)模型效力的提升(K-means)、(3)最終模型的構建(SVM)。為了進一步驗證本預警模型的效力,將其應用於台灣財務危機公司之預警,研究結果指出本模型具有相當優越的泛化能力與預測效果,此預警模型可以提供給決策者做有效之判斷。
Financial crisis forecasting is an essential and widely researches domains since it can have considerable effect on inner and outside parts of companies. How to effectively predict financial crisis is an important task in accounting, finance and management. Though much attention has been paid to financial crisis forecasting approaches based on singular classifier, its limitation of uncertainty and advantage of hybrid mechanism for financial crisis forecasting has also been ignored. Inspired by ensemble learning, the study introduced an emerging hybrid mechanism which hybrid t-test, K-means and Support Vector Machines (SVM) for financial crisis forecasting. According to our empirical results, the proposed hybrid mechanism poses outstanding performance in terms of forecasting accuracy. The proposed mechanism can give a proper direction for decision makers to make a judgment in turbulent economic environment.
中文摘要 ..................... iii
英文摘要 ..................... iv
誌謝辭  ..................... v
內容目錄 ..................... vii
表目錄  ..................... viii
圖目錄  ..................... ix
第一章  緒論................... 1
  第一節  研究背景與動機.............. 1
  第二節  研究目的............... 3
第三節  研究流程............... 4
第四節 論文架構............... 6
第二章  文獻探討................. 7
  第一節  財務危機公司的定義.......... 8
  第二節  財務危機之相關變數.......... 9
  第三節  財務危機之研究方法回顧......... 14
第三章  研究設計................. 20
  第一節  研究流程............... 20
  第二節  變數選取............... 21
第三節  研究方法............... 22
第四章  實證分析.................. 31
  第一節  樣本選取............... 31
第二節  T-TEST結果............. 31
第三節  財務危機預警模型結果.......... 34
第五章  結論與建議................ 36
參考文獻 ..................... 37

余惠芳(2009),股權結構、股東權益與公司價值之實證研究,全球管理與經濟,5(1),1-21。

吳克,余惠芳,黃曉如(2010),資訊透明、財務操作與公司績效之實證研究,全球管理與經濟,6(1),25-41。

何文榮,彭俊豪(2001),以不同類神經網路建構上市公司財務預警模型,臺灣土地金融季刊,38(3),1-22。

杜詩敏(2004),不同之類神經網路應用於財務危機預測模型之比較,樹德科技大學金融保險研究所未出版之碩士論文。

周淑卿,吳欽杉,陳安琳(2004),電子資訊產業與非電子資訊產業之研究發展支出、股權結構公司績效之關聯性研究,臺北科技大學學報,37(2),267-281。

林妙雀,顏怡音,陳雪芳(2008),公司治理與財務健全度對企業價值影響之研究-多元適應性雲形回歸之運用,中山管理評論,16(4), 787-822。

黃小玉(2004),公司治理與公司績效關係之研究-以台灣上市電子工業為例,興國學報,153-167

陳肇榮(1983),財務比率預測企業財務危機之實證研究,國立政治大學企業管理研究所未出版之博士論文。

張大成,薛人瑞,黃建隆(2003),財務危機模型之變數選取研究,
貨幣觀測與信用評等,(39),96-105。

黃承龍,陳穆臻,王界人(2004),支援向量機於信用評等之應用。計量管理期刊,1(2),155-172。

楊佳寧,陳漢沖(2003),存活分析模型於信用風險管理之應用-以台灣上市櫃公司為例,貨幣觀測與信用評等,(39),106-118。

潘玉葉(1990),臺灣股票上市公司財務危機預警分析,淡江大學管理科學研究所未出版之博士論文。

嚴玲敏(2007),應用類神經網路建構一套財務危機預警系統,逢甲大學資訊電機工程碩士在職專班未出版之碩士論文。
二、英文部分
Altman, E. (1968). Financial Ratios, Discriminant analysis and the prediction of corporate bankruptcy.The Journal of Finance, 23(4), September, 589-609.

Beaver, W. (1966).Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4(1), 71-111.
Black, F. & Scholes, M. S. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, University of Chicago Press, 81(3), 637-54.

Blum, M. (1974). Failing Company Discriminant Analysis. Journal of Accounting Research, 1-25.

Bennedsen, M., Kongsted, H. C., & Nielsen, K. M. (2008).The causal effect of board size in the performance of small and medium-sized firms.Journal of Banking and Finance, 32(6), 1098–1109.

Casey, C., & Norman, B. (1985). Using operating cash flow data to predict financial distress: some extensions. Journal of Accounting Research, 23(1), 384-401.

Coval, J. D., & Shumway, T. (2001). Expected option returns. Journal of Finance, 56(3), 983-1009.

Cestnik, B., Lavrac N., Zelezny F., Gamberger D., Todorovski L., & Kline, M. (2002). Data mining for decision support in marketing: A case study in targeting a marketing campaign. Paper presented at the IDDM-2002 Workshop at ECML'02.

Canbas S., Cabuk A., & Kilic, S. B. (2005). Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case. European Journal of Operational Research, 166(2), 528-546.

Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines.

Deakin, .E. (1972). A discrimainant analysis of predictors of business failure.Journal of Accounting Research, 10(1), 167-179.

Dalton, D. R., & Kesner, I. F. (1987). Composition and CEO duality in boards of directors: An international perspective. Journal of International Business Studies ,18 (3) , 33-42.

Da-wei, X., & Yang, M. (2010). The selection method for hyper-parameters of support vector classification by adaptive chaotic cultural algorithm.International Journal of Intelligent Computing and Cybernetics, 3(3), 449-462.

Eisenberg T., Sundgren, S. & Wells, M. T. (1998). Larger board size and decreasing firm value in small firms. Journal of Financial Economics, 48(1), 35–54

Geske, R.(1979). The valuation of compound options. Journal of Financial Economics, 7(1), 63-81

Gladstein, D. L. (1984). Groups in context: A model of task group effectiveness. Administrative Science Quarterly, 29(4), 499–517

Gentry. (1987). Funds flow components, financial rations, and bankruptcy. Journal of Business Finance & Accounting, 14(4), 595-606

Gombola, M. J., Haskins, M. E., Ketz, J. E., & Williams, D. D. (1987). Cash flow in bankruptcy prediction. Financial Management, 16(4), 55-65.

Hornik, K., Hornik, M., Stinchcombe, & Wite, H. (1989). Multilayered feedforward network are universal approximators. Neural Network, 2(5), 359-366.

Ivashina, V., & Scharfstein, D. (2010). Bank lending during the financial crisis, Journal of Financial Economics, 97(3), 319–338.

Jensen, M. & Meckling, W. (1976). Theory of the firm: managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3(4), 305-360.

Jensen, M. C. (1993). The modern industrial revolution, exit, and the failure of internal control systems.Journal of Finance, 48(3), 831–880.
Ketz, J. E. (1978). The effect of general price-level adjustments on the predictive ability of financial ratios. Journal of Accounting Research, 16(3), 273-284.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization, Proc. IEEE Int’l. Conf. on Neural Networks, 1(4), Piscataway, NJ: IEEE Service Center, 1942-1948.

Kun, C. L., Ingoo H., & Youngsig K. (1996). Hybrid neural network models for bankruptcy predictions.Decision Support System, 18(1), 63-72.

Kirkos, S., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Systems with Application, 32(4), 995-1003.

Lipton, M., & W.Lorsch, J. (1992). A modest proposal for improved corporate governance.Business Lawyer, 48(1), 59–77.

Li, Y., Mahajan, R. L., & Tong, J. (1993). Design factors and Their Effect on PCB Assembly Yield- Statistical and Neural Network Predictive Models, IEEE/CHMT International Electronics Manufacturing Technology Symposium, 353-361.

Lin, F., Liang, D., & Chen, E. (2011). Financial ratio selection for business crisis prediction.Expert Systems with Applications, 38(12), 15094–15102.
Merwin, C. (1942). Financind Small Corporations: In Five Manufacturing Industries, National Bureau of Economic Research , 1926-1936.

Meyer, P. A. & Pifer, H. W. (1970). Prediction of bank failures. Journal of Finance ,25(4), 853-868.

Merton, R. C. (1974). On the pricing of corporate debt: the risk structure of interest rates, Journal of Finance, 29(2), 449–470.

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Berkeley Symposium on Mathematical Statistics and Probability, 281-297.

Morck, R., Shleifer, A., & Vishny, R. (1988). Management ownership and market valuation: An empirical analysis.Journal of Financial Economics, 20(1) , 293-315.

Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109-131.

Odom, M. & Sharda, R. (1990). A neural networks model for bankruptcy prediction. Proceedings of the IEEE International Conference on Neural Network 2, 163–168.

Ozkan, G., Nur, E., & Tektas, A. (2006). Efficiency analysis of the Turkish banking sector in precrisis and crisis period: A DEA approach. Contemporary Economic Policy, 24(3), 418-431.

Press. & Wilson. (1978). The lending behavior of global banks:A relative comparison of U.S. vs. Non-U.s. banks, Ph.D. dissertation, University of Kentucky, Lexington, Kentucky, U.S.A.

Ravisankar, P., Ravi, V., RaghavaRao., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491-500.

Shin, K. S., Lee, T., S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systemswith Applications, 28(1), 127-135.

Shue, L. Y., Chen, C. W., & Shiue, W. (2009). The developent of an ontology-based expert system for corporate financial rating. Expert Systems with Applications, 36(2), 2130-2142.

Sarkar, B. K., Sana, S. S., & Chaudhuri, K. (2011). Selecting informative rules with parallel genetic algorithm in classification problem, Applied Mathematics and Computation, 218(7), 3247-3264.

Tam, K. T., & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank failure predictions.Management Science, 38, 926-947.

Wua, T. C., & Hsu, M. F. (2012). Credit risk assessment and decision making by a fusion approach , Knowledge-Based Systems,35, 102–110

Vapnik, V. N. (1995). The nature of statistical learning theory. New York, USA.

Winakor, A. & Smith, R. (1935). Changes in the financial structure of successful corporations, bureau of business research, and A support vector method for optimizing average precision, in Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA, SIGIR 07, 271–278.

Zmijewski, M. E. (1984). Methodological issues related to the estimation of financialdistress prediction models. Journal of Accounting Research, 22(1), 59-80.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔